

Abstract—In this paper the FPGA implementations for four

stream ciphers are presented. The two stream ciphers, MUGI and
SNOW 2.0 are recently adopted by the International Organization for
Standardization ISO/IEC 18033-4:2005 standard. The other two
stream ciphers, MICKEY 128 and TRIVIUM have been submitted
and are under consideration for the eSTREAM, the ECRYPT
(European Network of Excellence for Cryptology) Stream Cipher
project. All ciphers were coded using VHDL language. For the
hardware implementation, an FPGA device was used. The proposed
implementations achieve throughputs range from 166 Mbps for
MICKEY 128 to 6080 Mbps for MUGI.

Keywords—Cryptography, ISO/IEC 18033-4:2005 standard,
Hardware implementation, Stream ciphers

I. INTRODUCTION
ECURING data in transmission is the most common real-
life cryptographic problem. Basic security services require
both encryption and authentication. This is mainly realized

using a private-key algorithm and a Message Authentication
Code (MAC).
 It is common to classify encryption algorithms as public-
key algorithms, that are typically used to establish secure
connections over insecure channels, and private-key
algorithms, that due to their inherent efficiency, are employed
to secure the bulk data transmission phase. Although among
the class of private-key, block ciphers are probably the best
known and well-studied objects during the last years a major
effort taken place in order to propose new and secure stream
ciphers.

Stream ciphers are practical approximations to the one-time
pad and can operate on blocks as small as a single bit [1].
One-time pad is a random key used to operate on plaintext of
equal length once and never used again. The drawback of one-
time pad is that the length of the key has to be equal to that of
plaintext and that there is a difficulty in distributing the key.

Stream ciphers have different implementation properties
than block ciphers that restrict the cryptanalyst. They only
receive their inputs once (a key and an initialization vector)
and then produce a long stream of pseudo-random data.

A stream cipher can start with a strong cryptographic
operation to thoroughly mix the key and initialization vector
into a state, and then use this state and a simpler mixing

Manuscript received January 13, 2006.
Paris Kitsos is with the Digital Systems and Media Computing Laboratory,

School of Science & Technology, Hellenic Open University, Patras, Greece
(phone: +302610367535, fax: +302610367520; e-mail: pkitsos@ieee.org).

operation to produce the keystream. If the attacker tries to
manipulate the inputs of the cipher encounters the strong
cryptographic operation. As there are fewer cryptographic
requirements to fulfill, the keystream generation function can
be made significantly faster than a block cipher can be.

Fig. 1 shows the general diagram of the cipher process with
stream cipher [2]. The stream cipher takes two parameters, the
secret key, K, and the initialization vector, IV, and produces
the keystream bits, zt. In stream encryption each plaintext
symbol, Pt, is encrypted by applying a group operation with a
keystream symbol, zt, resulting in a ciphertext symbol ct. In
modern cipher the operation is the simple bitwise XOR.

Fig. 1 The stream cipher process

Decryption takes the substraction of the keystream symbol
from the ciphertext symbol. With the bitwise XOR this is the
same operation.

In this paper the stream ciphers, that are recently adopted
by the International Organization for Standardization ISO/IEC
18033-4:2005 standard, are described and implemented [3].
This standard comprises the MUGI [4] and SNOW 2.0 [5]
stream ciphers. In addition, except the above ciphers, two
others have been implemented, the MICKEY-128 [6] and
TRIVIUM [7] stream ciphers. These ciphers are implemented
for comparisons in design philosophy and time performance
with the standard ciphers purposes. The designers’ directions
are generated by the new wireless standards where demand
hardware environments where gate count, power consumption
and memory are very limited.

The MICKEΥ-128 and TRIVIUM stream ciphers have
been submitted and are under consideration for the
eSTREAM, the ECRYPT (European Network of Excellence
for Cryptology) Stream Cipher project [8]. The eSTREAM is
a multi-year effort to identify new stream ciphers that might
become suitable for widespread adoption.

Hardware Implementations for the ISO/IEC
18033-4:2005 Standard for Stream Ciphers

Paris Kitsos

S

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

853International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
65

.p
df

The following of this paper is structured as below. In
section II the implemented stream ciphers specifications are
briefly described. In section III the hardware architectures and
implementations are explained in detail while in section IV the
synthesis results and comparisons between the stream ciphers
are mentioned. Finally, the section V concludes the paper.

II. STREAM CIPHERS SPECIFICATIONS

A. MUGI Pseudorandom Number Generator
 MUGI is a pseudorandom number generator (PRNG) used
as a stream cipher. The design aims to be suitable for both
software and hardware implementations. MUGI has two
independent parameters as inputs. The first one is 128-bit
secret key while the second one is 128-bit initial, public,
vector. MUGI generates a 64-bit length random bit string in
each round. The design of MUGI is similar to PANAMA
stream cipher [9]. So, it consists of four main operational
modules. As Fig. 2 shows the Internal State is divided in two
parts, State a and Buffer b.

Fig. 1 A PANAMA-like stream cipher

The Update Function is divided in analogy to the internal
state. Note that each update function uses another internal
state as a parameter. We denote the update function of State a
and Buffer b as ρ and λ functions respectively. The output
filter f abstracts some bits of State a for each round.
 The operation of MUGI is divided in two phases. The
initialization phase and the keystream generation phase. The
initialization phase is divided in 3 steps. Firstly, the secret key
K is inserted into state a. Then initialize buffer b with running
ρ. Secondly, adds the initial vector I into state a and initializes
state a with running ρ and last the whole internal state is
mixed. In the keystream generation phase runs n rounds
update function and outputs a part of the internal state (64-bit)
for each round.
 More details about the cipher specification can be found in
[4].

B. SNOW 2.0 Stream Cipher
 The main parts of SNOW 2.0 are a Linear Feedback Shift
Register (LFSR) of length of 16 and a Finite State Machine
(FSM). The FSM has two input words, taken from the LFSR,
and the running key is XORed between the FSM output and
the last element of the LFSR. This operation diagram is
depicted in Fig. 3.

Fig. 3 The SNOW 2.0 stream cipher

The feedback polynomial is given by the (1).

][1)(322
511416 xFxxxx ∈+++= −ααπ (1)

where α is the root of (2)
][82

2394822453234 xFxxxx ∈++++ ββββ (2)

and β is a root of (3)
][1 22

3578 xFxxxx ∈++++ . (3)

 The FSM has two registers R1 and R2, each holding 32-bit
data. The value of the registers at time 0≥t is denoted as R1t
and R2t respectively. The input to the FSM is (st+15, st+5) and
the output of the FSM, denoted as Ft, is calculated as follows
(4)

0,2)1(15 ≥⊕+= + tRRsF tttt (4)
and the keystream is given by

1, ≥⊕= tsFz ttt . (5)
The registers R1 and R2 are updated with new values
according to

ttt RsR 21 51 += ++ (6)

and 1),1(2 1 ≥=+ tRSR tt . (7)
The addition (+) in the (4) and (6) is symbolized as in Fig.
3 and we mean integer addition modulo 232 whereas with
symbol ⊕ we mean bitwise addition (XOR). The S-box is the
similar to the RIJNDAEL S-box [10].

The operation of the cipher is the following. First, a key
initialization is performed. This operation provides the LFSR
with a starting state as well as giving the internal FSM
registers R1 and R2 their initial values. The cipher is clocked
for 32 times. Instead, the FSM output, Ft, is incorporated with
the feedback loop. By time t=0 we mean the time instead
directly after the key initialization. Then the cipher is clocked
once before producing the first keystream symbol, i.e., the
first keystream symbol, denoted as z1, is produced at time t=1.
Then the cipher is clocked again and the second keystream
symbol is read. This process is repeated until the cipher
produces the keystream with length equal to
plaintext/ciphertext length.

More details about the cipher specification can be found in
[5].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

854International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
65

.p
df

C. MICKEY-128 Stream Cipher
MICKET-128 stream cipher is intended to have low

complexity in hardware, while providing a high level of
security. It uses irregular clocking of shift registers, with some
novel techniques to balance the need for guarantees on period
and pseudorandomness to avoid certain cryptanalytic attacks.
The overall diagram of MICKEY-128 stream cipher is shown
in Fig. 4a.

Fig. 4 The TRIVIUM stream cipher

MICKEY-128 takes two input parameters, the 128-bit secret
key, K, and an initialization variable, IV, anywhere between 0
and 128-bit in length. Two 128-bit registers R and S are used
in order to build it. The R register is a Linear Feedback Shift
Register (LFSR) and the S register is a Non-linear Feedback
Shift Register (NFSR). Two variables are defined. The
Control_bit_R and the Control_bit_S. The Control_bit_R is
defined as s43 xor r85 and the Control_bit_S is defined as s85
xor r42 where s43, s85, r42 and r85 are 42nd bit and 85th bit
of the register R, the 43rd bit and 85th bit of the register S.
When Control_bit_R=0 the register R is a standard LFSR as
Fig. 4b shows. When Control_bit_R=1, as well as shifting
each bit in the register to the right, we also XOR it back into
the current stage, as shown in Fig. 4c. This corresponds to
multiplication by x+1. Fig. 4d shows the design of the NFSR S
register. The variables FB0i and FB1i, the transformation tr
and the mathematical equations, that the register S uses for
each building, can be found in reference [6].

D. TRIVIUM Stream Cipher
 TRIVIUM is a synchronous stream cipher designed to
generate up to 264 bits of keystream from an 80-bit secret key,

K, and an 80-bit initial value, IV. As for most stream ciphers,
this process consists of two phases. First, the internal state of
the cipher is initialized using the key and the IV, and then the
state is repeatedly updated and used to generate keystream
bits. Fig. 5 shows the architecture of the TRIVIUM stream
cipher.

Fig. 5 The TRIVIUM stream cipher

 The proposed design contains a 288-bit internal state
denoted as (s1,…, s288). So, the algorithm is initialized by
loading an 80-bit key and an 80-bit IV into the 288-bit initial
state, and setting all remaining bits to 0, except for s286, s287,
and s288. Then, the state is rotated over 4 full cycles, without
generating key stream bits.
 The keystream generation consists of an iterative process
which extracts the values of 15 specific state bits and uses
both of them to update 3 bits of the state and to compute 1 bit
of key stream zt. The state bits are then rotated and the process
repeats itself until the requested 642≤N bits of key stream
have been generated.

III. ARCHITECTURES AND HARDWARE IMPLEMENTATIONS

A. MUGI Architecture
The architecture that performs the MUGI pseudorandom

number generator is shown in Fig. 6. As this figure shows the
main parts of the proposed architectures are the State a, the
Buffer b and the functions ρ and λ. In addition, one 128-bit
register is used for latching of the secret key and initialization
vector. Also, the K/I init component is used for key and
initialization vector transformations [4] before the algorithm
initialization phase starts. The Auxiliary Buffer1 holds the
Buffer b data while the Auxiliary Buffer2 holds the State a
data during the initialization phase. Finally, there are a 3x192
multiplexer (MUX) and two XOR gates, 128-bit and 64-bit
respectively, accomplishing the generator architecture.

The initialization phase of MUGI is divided into 3 steps.
Firstly, Buffer b is initialized with a secret key, K. Secondly,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

855International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
65

.p
df

the initialization of the State a with the initial vector, I, takes
place. Last the whole internal state is mixed. So, when the key
is transformed is fed by the State a through the IN2
multiplexer input. Then, a, iterates only the function ρ and
puts a part of each a(t) into Buffer b as follows,

0
1

15))0,((ab i
i

+
− = ρ . In the previous equation ιρ means the i-th

iteration of ρ and)0,(aρ means the input from Buffer b is
zero. In other words, the data stored into Buffer b is not used

in this step. The Auxiliary Buffer1 is responsible for this. In
addition, the output data of the State a are never used in the
first step of the initialization phase. The Auxiliary Buffer2 is
responsible for this. In the second step the mixed State a with
value)0,()(0

16 aKa ρ= and the initial vector, I, are required. If
I is added to State a through the IN1 multiplexer input, State a
is mixed again by 16 rounds iteration of function ρ. So, the
mixed State a is represented as)0),,((16 IKaρ .

Fig. 6 MUGI Pseudorandom Number Generator Architecture

Finally, the last initialization phase step is a 16 rounds
iteration of the whole update function Update,

))(),0),,(((1616 KbIKaUpdatea ρ= (8)

where the notation)(Kb in the above equation denotes that
the Buffer b is initialized by the secret key K
 For security purposes, the algorithm output bits should not
be available to the users during the initialization process. So, a
64-bit register is located at the generator output that does not
latch its input bits during the initialization process.
 After the initialization, the 64-bit register latches the
generated bits and MUGI generates a 64-bit keystream. If we
denote the output at round t as Out(t), then the output is given
as,

)(
2)(tatOut = (9)

In other words MUGI outputs the lower 64-bit of State a at
the beginning of the round process.

The State a and Buffer b are 192-bit and 1024-bit registers

respectively. Τhe update function of State a is the function ρ.
It is a kind of target heavy Feistel structure with two F-
functions and uses Buffer b as a parameter. The hardware
architecture of function ρ is depicted in Fig. 7.

Fig. 7 The ρ Function Hardware Architecture

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

856International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
65

.p
df

 Furthermore, the hardware architecture of the F-function is
depicted in Fig. 8. The bytewise substitution S-box is the same
as the one in AES [10] while the linear transformation is the
combination of a 4 x 4 matrix and a bytewise shuffling. The
S-boxes have been implemented with LUTs. MUGI uses
MDS matrix which is the component of AES.

In addition, the function λ is the update function of Buffer b
and uses a part of State a as a parameter. The mathematical
background of function λ can be found in [4]. The hardware
implementation consists of simple XOR operations and bit-
shifting. Also, the values of the C0, C1 and C2 constants are
defined in [4].
 Finally, the Control Unit is responsible for the correct
operation of the whole algorithm.

Fig. 8 The F-Function Hardware Architecture

B. SNOW 2.0 Architecture
The proposed SNOW 2.0 hardware architecture is depicted

in Fig. 9. As this figure shows the architecture consists of two
main parts. The LFSR and the FSM.

The LFSR is built with 16 32-bit registers. As Fig. 9b shows
between each register a 32 2-input OR gate is located. The
operation starts with the initial parallel loading of the initial
values in each register according to the cipher specifications.
After, the input is forced equal to zero and the cipher starts to
operate due to the user’s commands.

Fig. 9 SNOW 2.0 Stream Cipher Architecture

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

857International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
65

.p
df

 The multiplication with α and α-1 are implemented with
Look-Up-Tables (LUTs) and 8-bit left or right shifting
respectively. The values of α and α-1 are computed by the
following equations.

]24[_)8(>><<= wXORMULw αα (10)
and

][_)8(1 winverseXORMULw αα >>=− (11)
 The pre-computed tables MUL_α and MUL_αinverse are
specified in [5].
 The FSM consist of two 32-bit register, 2 integer adders
() modulo 232, two 32-bit bitwise XOR (⊕) and four LUTs.
These LUTs blocks are used for the S-box implementation.
 Also, an efficient, in both area and time performance,
design with ROM blocks is implemented. In this
implementation the MUL_α and MUL_αinverse tables are
implemented with ROM blocks. In addition, the tables for the
S-box are implemented with ROM blocks. This
implementation is illustrated in the following Fig. 10.

Fig. 10 The ROM Blocks Based Implementation

The only difference is that ROM blocks are synchronous in
contrary to the LUTs. So, in cases of the multiplication with α
and α-1 (see Fig. 9a) the taps is taken one state before in order
to get the good values at the appropriate moment. Similar, for
the S-box the ROM blocks take their inputs not form the R1
output but from the R1 input as the Fig. 10b shows.
 For the adders implementations Carry Save Adders (CSA)
are used. For security purposes, the cipher output bits should
not be available to the users during the initialization process.
So, a 32-bit register is located at the cipher output that does
not latch its input bits during the initialization process.
 In the initialization process the FSM output, Ft, is forced
through the multiplexer, MUX, to the LFSR while during the
encryption/decryption process the LFSR is forced through the
multiplexer with zeros.

C. MICKEY-128 Architecture
The MICKEY-128 stream cipher architecture is shown in

Fig. 11. This architecture consists of the registers R and S
following the specifications demand. The way that the
Control_bit_R and the Control_bit_S variables are defined is
obvious. Also, the multiplexer MUX is shown that is needed in
order to the data values are forced in the registers. Finally, the
keystream bits are produced by the XORing of the r0 and s0
bits.

Fig. 11 MICKEY-128 Stream Cipher Architecture

The register R implementation is illustrated in Fig. 12.

Fig. 12 The Implementation of the Register R

The Control_bit_R signal helps each AND gate to configure
the register and works either in normal mode or multiplied the
current stage with x+1 polynomial.
 For the register S a straightforward implementation was
used.
 For security purposes, similar to the previous ciphers, a
flip-flop is inserted to the cipher output that does not latch its
input bits during the initialization process.

D. TRIVIUM Architecture
As Fig. 5 shows the TRIVIUM is the simpler cipher

implemented. Because of this simplicity a quite
straightforward architecture is implemented. For the
TRIVIUM hardware implementation 288 flip-flops, 11 2-
input XOR gates, 3 2-input AND gates and 288 2-input OR
gates are used. The OR gates are used in order to force the
initial values in the flip-flops.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

Each one of the stream ciphers was captured by using
VHDL, with structural description logic. All implementations
were simulated for the correct operation by using the test
vectors provided by each cipher specification. The VHDL

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

858International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
65

.p
df

codes were synthesized in a Xilinx Virtex-E V400EFG676
FPGA [11] for having a common hardware device for the
comparison. Then the implementations were simulated again
for the verification of the correct functionality in real time
operating conditions. The selected FPGA has 160K-bit
synchronous internal selectRAM blocks.

The synthesis results for the implemented stream ciphers
are presented in Table I.

As the above table shows the MUGI cipher consumed the
more FPGA resources compared with the others. The SNOW
2.0 (ROM) based implementation uses 48K-bit from the
internal selectRAM blocks. The TRIVIUM stream cipher is the
more compact compared with the others.

Performance comparisons in terms of frequency,
throughput and implementation efficiency are presented in
table II. The implementation efficiency (Mbps/#CLBs) is
defined as the ratio between the cipher throughput and the
number of CLBs that each cipher consumes. In addition,
comparisons with other previously published stream ciphers
are shown in this table.

As illustrated in table II the MUGI achieves the larger
throughput. Also, it has the second implementation efficiency
ratio. In addition, the SNOW 2.0 (ROM) based design is the

most suitable for FPGA implementation due to its bigger
ratio. Whilst their design simplicity the TRIVIUM has the
worst efficiency ratio.

To the best of our knowledge there are no published
hardware implementations results for the MUGI, MICKEY
128 and TRIVIUM stream ciphers, which can be compared
with our respective implementations. The implementation
results for SNOW 2.0 are comparable with the ones in [12].
The proposed ROM based implementation is more efficient
for FPGA implementation and covers less hardware resources,

since in [12] the area was 1150 CLB slices. In contrary the
proposed LUT based implementation achieve worse values in
both area and time performance.

Compared with previous published stream ciphers [13]-[14]
the proposed implementations achieve comparable and in the
most cases better performance.

Finally, the MUGI and SNOW 2.0 stream ciphers
outperform both the MICKEY 128 and TRIVIUM ciphers
throughputs.

V. CONCLUSION

In this paper four stream ciphers are implemented in

hardware and compared in terms of performance and
consumed FPGA area. These ciphers were coded in VHDL
language and synthesized in an FPGA device. The
implementations for the MUGI, MICKEY 128 and TRIVIUM
are the first in the literature. The largest throughput achieved
by the MUGI cipher while the smallest achieved by the
MICKEY 128 cipher. Finally, the most suitable for FPGA
implementation is the ROM based SNOW 2.0
implementations that have the biggest implementations
efficiency ratio.

REFERENCES
[1] M. J. B. Robshaw, “Stream Ciphers”, RSA Laboratories Technical

Report TR-701 Version 2.0, RAS Laboratories, July 1995.
[2] B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source

Code in C, John Wiley & Sons 1994.
[3] International Organization for Standardization, “ISO/IEC 18033-4:2005,

Information technology -- Security techniques -- Encryption algorithms -
- Part 4: Stream ciphers”, 2005.

[4] D. Watanabe, S. Furuya, H. Yoshida, and K. Takaragi, “MUGI
pseudorandom number generator”, Specification, 2001, on line available
at http://www.sdl.hitachi.co.jp/crypto/mugi/index-e.html

[5] P. Ekdahl, T. Johansson. A new version ot the stream cipher SNOW,
available from http://www.it.lth.se/cryptology/snow/, 2002.

[6] Steve Babbage, Matthew Dodd, “The stream cipher MICKEY-128”,
(ECRYPT) Stream Cipher Project Report 2005/016.

[7] Christophe De Canniθre and Bart Preneel, “Trivium - A Stream Cipher
Construction Inspired by Block Cipher Design Principles”, (ECRYPT)
Stream Cipher Project Report 2005/030

[8] ENCRYPT - European Network of Excellence in Cryptology, “Call for
Stream Cipher Primitives”, Scandinavian Congress Center, Aarhus,
Denmark, 26-27 May 2005, http://www.ecrypt.eu.org/stream/

[9] J. Daemen, and C. Clapp, “Fast hashing and stream encryption with
PANAMA”, In Proc. of Fast Software Encryption: 5th International
Workshop, FSE'98, Paris, France, March 1998.

[10] J. Daemen and V. Rijmen. The design of Rijndael: AES–The Advanced
Encryption Standard. Springer-Verlag, 2002.

[11] Xilinx Virtex FPGA Data Sheets (2005), URL: http://www.xilinx.com
[12] P. Leglise, F.-X. Standaert, G. Rouvroy, J.-J. Quisquater, “Efficient

implementation of recent stream ciphers on reconfigurable hardware
devices”, In Proc. of 26th Symposium on Information Theory in the
Benelux. May 19th-May 20th, 2005, Brussels, Belgium.

[13] K. Alexander, R. Karri, I. Minkin, K. Wu, P. Mishra, X. Li, “Towards
10-100 Gbps Cryptographic Architectures”, in proc. of CATT/WICAT
Annual Research Review, 2003, on line available at
http://wicat.poly.edu/tech report/tr/02-005.pdf

[14] M. D. Galanis, P. Kitsos, G. Kostopoulos, O. Koufopavlou,
“Comparison of the Performance of Stream Ciphers for Wireless
Communications”, in proc. of CCCT'04, Austin, Texas, USA, August
14-17, 2004.

TABLE I
STREAM CIPHERS SYNTHESIS RESULTS

FPGA Device
(VIRTEX-E V400EFG676 Stream Ciphers

CLBs # FGs # DFFs
MUGI 2092 4183 2437

SNOW 2.0 (LUT) 1545 3089 701
SNOW 2.0 (ROM) 391 782 625

MICKEY 128 167 333 235
TRIVIUM 144 172 288

(#CLBs) Configurable Logic Blocks, (#FGs) Function Generators,
(#DFFs) D Flip-Flops

TABLE II
STREAM CIPHERS PERFORMANCE COMPARISONS

Stream Cipher Freq. F
(MHz)

Throughput
(Mbps)

Implementation.
Efficiency

MUGI 95 6080 2.9
SNOW 2.0 (LUT) 122 3904 2.5
SNOW 2.0 (ROM) 141 4512 11.5

MICKEY128 166 166 0.99
TRIVIUM 211 211 1.5

SNOW 2.0 [12] - 5659 5.6
LILI-II [12] - 243 0.3

SNOW 1.0 [13] 66.5 2128 2.8
RC4 [14] 61 120.8 0.8

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

859International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
65

.p
df

Paris Kitsos was born in Athens, Greece in 1975. He received the B.S. in
physics and its Ph.D from the Department of Electrical and Computer
Engineering both at the University of Patras, Greece.
 He is research fellow with the Digital Systems & Media Computing
Laboratory, School of Science & Technology, Hellenic Open University
(HOU). His research interests include VLSI design, hardware implementations
of cryptographic algorithms and security protocols for wireless
communication systems. Dr. Kitsos has published more than 50 scientific
articles and technical reports, as well as is reviewing manuscripts for
International Journals and Conferences/Workshops in the areas of his
research.
 Dr. Kitsos is an editorial board member of “Computer and Electrical
Engineering, An International Journal (Elsevier Ltd.)”, member of the IEEE
(Institute of Electrical and Electronics Engineers), IEE (Institution of
Electrical Engineers) and the International Association for Cryptologic
Research (IACR). Finally, he has been organized special sessions in
international conferences and workshops.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007

860International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

29
65

.p
df

