Open Science Index, Computer and Information Engineering Vol:4, No:4, 2010 publications.waset.org/12593/pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:4, No:4, 2010

Data and Control Flow Analysis
of VDM++ Specifications

Mubina Nazmeen and Iram Rubab

Such as some of the approaches [9, 11] have usttiopa

Abstract—Formal Specification languages are being widelyuseanalysis and some [4, 5, 10] have designed tessdhsough
for system specification and testing. Highly catisystems such as boundary value analysis. Nadeem et al. [5] used W¥BNb

real time systems, avionics, and medical systerasrepresented
using Formal specification languages. Formal spetibns based
testing is mostly performed using black box testapgroaches thus
testing only the set of inputs and outputs of ty&tesn. The formal
specification language such as VDM++ can be usedvfate box

testing as they provide enough constructs as ahgr dtigh level

programming language. In this work, we perform data control

flow analysis of VDM++ class specifications. Theposed work is
discussed with an example of SavingAccount.

Keywords—VDM-SL, VDM++, data flow graph, control flow
graph, testing, formal specification.

. INTRODUCTION

HE use of formal languages is rising for the systehat
are more safety critical such as real time systewispics,

medicine etc. Formal languages provide an unambiguo 1.

The emphasis of our literature review is on testing
Overviews of the

and clear representation of the system specificafitd].
Formal languages are being used not only for tleeifipation
and modeling of the system but they are also aakéfact for

test the inheritance and polymorphic behavior ofectb
oriented systems. We intend to extend the use d¥1¥b for
data flow and control flow analysis. The data flelows the
definition and use of variables and tells about rbe data
routes [18]. Similarly, control flow shows how fuioms are
executing and examines the branch and loop steiaifithe
programs. The data flow and control flow analysidfurther
used for test case generation. We have appliechaposed
approach on a case study of Saving Account VDM-&s<|

The rest of the paper is organized as follows. iSect
gives a review of the literature. In section Il wéscuss the
proposed data and control flow of VDM++ specificas.
Section IV provides the proof of work in the forni case
study. Section V concludes the paper.

LITERATURE REVIEW

approaches in VDM and VDM++,
approaches that we have surveyed are as follows:

testing the system. Test cases are generated fl@m t Fizgerald et al. [8] worked on validation of systdevel
specification of the system and are applied on thgning properties in formal models of distributedat time

implementation. This provides the conformance
specifications in a system with its implementa{i22].

A large number of specification based testing tegples are
cited in literature such as using Z specificati@i][VDM
specification [1], B specifications [20], etc. Fam
specification based testing is mostly performedgishe black
box testing approaches such as boundary value sy 5,
10], partition analysis [9, 11], classificationdrenethod [23].

oémbedded systems. The validation of inconsisterimééseen

those distributed applications is the main concefnthe
approach. The informal model constructed fromswé the
system is transformed into VDM++ specification miodighe
model is then formally tested. The constructionnuddel is
automated. Macedo et al. [19] proposed an appredwre
abstract system specifications of functional anding
properties are added with details. These detaits atded

As the formal specification languages provide systethrough intermediate models expressing architecafrehe

specifications at a higher abstraction level inlaetive form
[14].

Formal Specification based test case generation bman

performed using white box or code based testingcgmhes.
White box testing is possible only for the languaghat

system, concurrency and timing behaviors. The mglgien
validated through scenario based testing.

Nadeem et al. [9] introduced the technique of nesti
inheritance relationship using the VDM++ specificat By
using synchronization constraints provided by VDMait

provide imperative language constructs such as VBM+yqid sets of sequence of operations of a classpeeified. As

VDM++ is a language that provides completely exalbls
specifications as any other high level programnanguage.
We can use the VDM++ specification to test theayst code
level details at an early stage in development.

Many researchers have proposed approaches fongesti
VDM++ [5, 8, 9, 10, 15] specifications. However,ah of the
proposed approaches black box testing have been use

Authors are with the University Institute of Infoation Technology, Pir
Meher Ali Shah Arid Agriculture University, Rawalmli, Pakistan..e-mail
mubi_139@yahoo.com

International Scholarly and Scientific Research & Innovation 4(4) 2010

730

a result of operation sequence and partition pegeia test
model is constructed that are used in test casergeon.
Another approach by Nadeem et al. [10] has predemteew
idea to generate test cases automatically from VBM+
specification. The testing in this approach is dase the fault
model presented by subtype inheritance and polyhiemp
testing presented by Offutt et al. [13]. In the VBM
specification of a class a trace structure is s$igeciwhich
defines the valid sequence of method invocationslads for
an individual object of a class. From these tranectures; test
sequence generator constructs valid sequence cdtapes of

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:4, No:4, 2010 publications.waset.org/12593/pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:4, No:4, 2010

a class. The partition analyzer makes conjunctiohglass
invariants predicate with precondition predicate edch
method in class. With the help of partition anadysést data is
generated for each operation in operation sequetccdse
tested. Verhoef et al. [15] have proposed the sibento the
VDM++ to handle the problems of the system in distired
and real time environments. Initially authors haliscussed
the existing notation of VDM++ and timed extensions
Nadeem et al. [5] proposed a framework which suispibie
automatic generation and execution of test casma fibject
oriented formal specification. The framework regqsir
VDM++ specification and its corresponding implenaiun in
C++. With C++ code the symbol table is also corded, the
boundary values of which are used by test genertior
generate test cases. After generation of test céssisdriver
executes test cases on implementation. An approfgearsing
a VDM-SL specification to generate C code and desh, was
developed [4], where test case generation is doge
converting pre condition and post condition pretdicato C

(DNF). It is also used to determine test cases doery
individual operation.

Scullard [12] have described the validation proces$s
design, adapted by a very large scale integratidbSI)
distributed array processor (VDAP) project. Hardsvas
designed in this project by using informal desigagess, but
tools and methods of VDM helps in defining testsitategy.
Generation of tests in [12] is done by translating very old
level interface specification into VDM.

All of the approaches have used the black box rgsti
strategies. In most of the approaches [3, 4, &, @] unit
level testing have been done while some [9, 10kHzandled
the inheritance and polymorphic relationships. &esigning
test cases different black box testing methods saeh
boundary value analysis [4, 5, 10] and equivalgraréitioning
[9, 11] have been used. As a test input some appesd9, 10,
11] have used DNF expression while some [6, 8] heveal the
bequence of events. Some of the approaches hav#onesh
the test coverage criteria [11], test data gerandB, 4, 5, 7,

function and modify the source code to evaluatehea®, 10, 11, 12] and test case generation [4, 5, 9, 81, 12]. In

precondition before every function calls. Test saswme
generating from precondition predicate expressipmpérsing
them and partitioning the input domain. The testeadrthen
executes the generated test cases on the modifigel and
evaluates test results by executing code for pmsdidon.

Droschl [6] proposed an approach for developing test
cases from the collection of valid sequence of tvehest
case generator creates test suites which are thamitted to
VDM Tools. Then, the VDM Tools supports analysis
specification by animation and test. Author haslemgnted
the approach on a comprehensive case study namkctass
control system. The case study is focusing on twaufes
digital video recording and automatic door contddl the
system. The paper [7] explores the possibilititawdomatic
black box testing through formal requirements dipeation.
Author has presented the framework focusing theofisermal
requirements specification which is used in makitg
abstract test oracles for concrete implementatidine
approach uses retrieve function to map the conéngigt and
output to abstract representation.

Agerholm et al. [3] presents a report on case study

conducted at Dessault Electrinique in which thegufed on
the suitability of VDM technology for early softwar
development phases before detailed design wherreewnts
are not confirmed and still there need of custofeedback.
The example used by the case study is real meplicapion.
Jeremy et al. [11] have presented the methodolégaxition
analysis in model based specification of VDM. Thesgnted
approach is based on partition analysis by usiate dhased
specification. Where, the division method is achgbvby
transforming the relations into disjunctive normfdrms

International Scholarly and Scientific Research & Innovation 4(4) 2010

of 1.

731

surveyed approaches analysis of results has beeedcaut

either by a case study [3, 6, 8, 12, 15, 19] ohwit example
[4,5, 7,9, 10, 11]. Additionally for making the@oach more
understandable structural [4, 5, 7, 8, 9, 10] aelalioral [3,

6, 11, 12] elements have been used. Most of thepappes [5,

6, 7, 8, 9, 10, 15] have used the automatic suppbrt
VDMTools.

DATA AND CONTROL FLOW ANALYSIS OF VDMt+ CLASS
SPECIFICATIONS

We use VDM++ specifications for data flow and cohtr
flow analysis. This analysis is further used fosttease
generation. An abstract model of the proposed wisrk
presented in figure 1.
Following is a brief description of the proposedaach
activities.
 VDM++ class specifications are used as input artifa
for generating control flow graph. A control flow
graph is a representation of control transfer withi
class.
The control flow graph is annotated with def-use
annotations.

» Extracting def-use associations of data membegs of
class.

« A coverage criterion is applied on def-use
associations to generate test cases. The gen¢eated
cases are based on only def-use values.

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:4, No:4, 2010 publications.waset.org/12593/pdf

World Academy of Science,

Engineering and Technology

International Journal of Computer and Information Engineering
Vol:4, No:4, 2010

.7 VDM-++ Specifications

(CFG)

VDM-++ Control Flow Graph

Annotated CFG with Data
Flow information

Def-Use Associations

Coverage Criteria

Test Cases Generation

Test Cases

Fig. 1: An abstract model of the proposed approach

Now we discuss all the activities with an examgdleSaving
Account class. The SavingAccount specifications
presented in VDM++ in figure 2. A given SavingAccoelass
has two instance variables of type real. Afterwatdsas an
invariant on global variable “bal”. It has two op&ons of
withdrawl and postinterest which have preconditicensd
postconditions for those operations.

Class SavingAccount
Instance variables
intrstRate: real;
minbal: real;
invariant bal >= minBal;
operations
withdraw(amt:real)
ext wr bal: real
pre bal >= minBal+amt;
post bal = bal- amt;
postinterest()
ext wr bal: real;
post bal=bal* (1+intrstRate);
end SavingAccount

Fig. 2: SavingAccount Example in VDM++ specificatio

International Scholarly and Scientific Research & Innovation 4(4) 2010

are A. VDM++ Control Flow Graph

A control flow graph (CFG) is a directed graph imigh
node represents block of statements while the edgEesent
the control flow between statement blocks [18]. In
constructing a control flow graph the emphasisriscontrol
transfer within a class. A control flow graph of dass
SavingAccount is presented in figure 3. We havestranted
the following control flow graph by considering t&aent of
specification as nodes and their control transéeedges. For
example after an entry node, at second node wedefirgtion
of variables and branch shows the viability ancaglieement
of a condition.

732 1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:4, No:4, 2010 publications.waset.org/12593/pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:4, No:4, 2010

@ Entry

minbal:real
intrstRate:real

Bal>=minbal
Bal<minbal

bal:real
amt:real

bal>=minBal+amt G

bal>=minBal+amt

ba= bal” -ami

Bal:real
bal= bal
*(1+intrstRate)

End SavingAccount

Fig. 3: Control flow graph of class SavingAccount

B. Annotation of CFG with Def-use

Data flow graph represents the definition of vaeaband
their use in the program [18]. In data flow gragicwrence of
variable is classified as definitional occurrenceef],
computational-use(c-use) occurrence and predicEepruse)
occurrence. Where assignment statement contains-tise of
variable followed by def of variable and input staent also
contains the def of variables. Similarly an outgtatement
contains c-use of variable while the conditionahnsfer
statement contains p-use of variable [18]. We btsedef use
analysis for VDM++ specifications. For doing defeu
analysis we have considered an input and definiianables
as def (variable) in an appropriate statement. &ail output
statement such as “bal = bal - amt” have a c-usa dhta
member “amt” and “bal” followed by variable “bal”
Additionally a conditional statement contains asg-such as
“bal > minbal” have p-use (bal, (sourcenode, targee)).In
figure 4 we have presented the data flow graphhef éxample
mentioned above.

International Scholarly and Scientific Research & Innovation 4(4) 2010

Entry

def (intrstRate)
def (minBal)

p-use(bal, (2,3))
p-use(bal, (2,7))

def (bal)
def (amt)

p-use (bal, (4,5))
p-use (bal, (4,6))

def (bal)
c-use (amt)
c-use(ba’)

def (bal)
c-use(bal)
c-use(intrstRate

End SavingAccount

030205020

Fig. 4: Data flow graph of class SavingAccount

Here we present the algorithm used to generatdahase
analysis of VDM++ class specifications.

Algorithm
EDGE
{ char edgelabel[];
EDGE *edge; };

DataFlowGraph()

1. N[][]: string

2. create EDGE

3. for i=0; i<=sizeof(N[][]); i++, repeat step 4

4. for j=0; N[i][j] '= Null; j++ repeat step 5

5. if N[i][j]] == assignment || N[i][j] == definitia,

then
create e : EDGE
e.edgelabel =
def_use(var, e)
else if N[i][j] == output || N[i][j] == computabn,
the create e : EDGE
e.edgelabel = c_use(va)(var-
e)
else if N[i][j] == predicate || N[i][j] == condiion,
the create e : EDGE
e.edgelabel = p_use(vae, €))
else
create e : EDGE
e.edgelabel = end

733

1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:4, No:4, 2010 publications.waset.org/12593/pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:4, No:4, 2010

C. Def-use Associations

Def-use association means an association between
definition of a variable and the node where itsedi The use
of variable may be either computation or predicatable
shows the definition and use associations of viegin a class
SavingAccount.
Consider the following statements of specification,

Balance:int

if Balance>=minBalance

Balance=Balance-amount

The first statement contains the definition (def) data
member “Balance” and second statement has predisatép-
use) of data member Balance. While, the third state
contains the c-use of Balance and amount followeddf-use
of data member Balance.

TABLE |
DEF-USE ASSOCIATIONS FOR THE FIG3

Variables | def d-c-use d-p-use

intrstRate | 1 {6} @

minBal 1) D

bal 3 @ (2,3, (@7, (4)5),
(4.6)

Amt 3 {5} @

Bal 5 @ (2,3, (@7, (4)5),
(4.6)

bar 6 @ (2,3), (2,7, (4)5),
(4.6)

E. Test case generation

So far we have CFG and def-use information of class

VDM++. We use this information to generate testesafor
VDM++ specifications. Test cases are the sequente
methods which evaluate the behavior of a systenemtekt.
These generated sequences of methods must covgrpath
of flow graph.

VI. CONCLUSION

thIn this paper, we present the def-use analysis DM¥+
class specifications. VDM++ specifications are falijnused
for testing approaches such as partition analysiskeoundary
value analysis. VDM++ specifications provide enough
constructs for def-use analysis. Def-use analysigiges inner
details of a class that is specific to testing. Tef-use of
VDM++ can be performed like any high level prograimgn
languages. We present the approach with the hekp wEll
used example of a SavingAccount.

As a future work we intend to work on def-use asiglat an
integration level that involves many classes. We also
working on automation of the proposed approach.

REFERENCES

[1] CIiff B. Jones. “Systematic Software Developmentsing VDM”
Prentice-Hall International, Englewood Cliffs, Nedersey, second
edition, 1990.

[2] Elmstrom.R, Larsen.P.G and Lassen.P.B “The IFAD BMToolbox:
A Practical Approach to Formal Specification” ACMIGPLAN
Notices, Volume 29,September 1994.

[3] Sten Agerholm, Pierre-Jean Lecoeur, and EtiennehReiH. “Formal
specification and validation at work: A case stugyng VDM-SL” In
Proceedings of Second Workshop on Formal MethodSaftware
Practice, Florida, Marts. ACM, 1998.

[4] Nadeem, A., Rehman, M. J. “Framework for Automafedting from
VDM-SL Specifications” In proceedings of the 8th HE-INMIC
Conference (INMIC 2004), Lahore, Pakistan, Decen28&4.

[5] Nadem.A and Rehman.M.J."TESTAF: A Test automatioantework
for class testing using object oriented formal #pEtions”.Journal of
universal computer science vol 11issue 6, 2005.

[6] Georg Droschl. “Design and Application of a Tests€&enerator for
VDM-SL” Austrian Research Center Scibcrsdorf and ISTechniscal
University of Graz dAustria. 1999.

[7]1 Bernhard K. Aichering.”Automated Black-Box Testimgth Abstract
VDM Oracles”.In M. Felici, K. Kanoun and A. Pasquiiditors,
Computer Safety,reliability and security: procegdinof the 18
international conference, SAFECOMP’1999, Toulous€rance,
September 1999, volume 1698 of lecture notes inpcen science,
pages 250-259. Springer, 1999.

[8] J. S. Fitzgerald, P. G. Larsen, S. Tjell, and M.rkgef."Validation
Support for Real- Time Embedded Systems in VDM+etHnical
Report CS-TR-1017, School of computing Science, deshe
University, April 2007. Revised Version to appearRroc. 18 IEEE
High Assurance System Engineering Symposium, NoeemB007,
Dallas, Texas, IEEE .

[9] Nadeem. A, Micheal R. Lyu. “A Framework for inharitce testing

O From VDM++ Specifications”.12 Pacific Rim International
Symposium on Dependable Computing (PRDC’06). |IEEID6.

[10] Nadeem. A, Malik.Z Micheal R. Lyu. “A Framework fanheritance
and polymorphic Testing using a VDM++ Specificattl2" Pacific
Rim International Symposium on Dependable Comjgu(PRDC’06).

A test case maybe generated using coverage criteria IEEE, 2006.

Coverage criteria are the way which tells the tebtaw the
maximum faults in a program will be covered. Soroeetage
criteria which are commonly used to evaluate tlamgfer of
control, definitions of variables and their use;aa# nodes
(statement coverage), all edge (branch coveratfjejets, all

c-use and all p-use criteria [18]. By following ewage criteria
on the associations between definitions and usearables in
program test cases may be derived.

[11] J. Dick and A. Faivre.”Automating the Generatiard&Sequencing of
test cases from model-based specifications”In J2.GVoodcock and P.
G. Larsen, editors, FME'93: Industrial-strengthnfial methods, pages
268-284. Formal Methods Europe, Springer VerlagilA®93. Lecture
Notes in Computer Science 670.

[12] G. T Scullard."Test Case Selection using VDM" In Boomfield, L.
Marshall, and R. Jone, editors, VDM88:VDM-The wdyead, number
328 in lecture notes in computer sciences pagesl83&8/DM Europe,
Springer Verlag, September 1988.

[13] J. Offut, R. Alexander, Y. Wu, Q. Xiao, C. Hutchams A Fault Model
for Subtype Inheritance and Polymorphism. The TiheHEEE
International Symposium on Software Reliability Hregring
(ISSRE’01), pages 89-95, Hong Kong PRC, Novemb&d20

[14] J. M. Wing. “A Specifier's Introduction to Formal éthods”.|IEEE
Computer, vol.7, No.5,. Pages 8-4 September 1990.

International Scholarly and Scientific Research & Innovation 4(4) 2010 734 1SN1:0000000091950263

Open Science Index, Computer and Information Engineering Vol:4, No:4, 2010 publications.waset.org/12593/pdf

(18]

(16]

[17]

(18]

[19]

(20]
[21]
(22]

(23]

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:4, No:4, 2010

Verhoef. M, Larsen. P.G and Hooman.J."Modeling avalidating
Distributed Embedded Real-Time Systems with VDM+P+bceeding of
FN 2006; Formal Methods, August, 2006. Springer CISN4085, pp
147-162.

Fitzgerald, J., Larsen, P.G., Mukherjee, P., PlatWerhoef, M.,
Validated Designs for ObjectorientedSystems, Seriderlag, 2005,
ISBN 1-85233-881-4.

VDMTools: The VDM++ Language, version 6.8.1, CSKr@aration,
2005.

Rapps and E. J. Weyuker, “Selecting Software TestaJsing Data
Flow Information,” IEEE Trans. Software Engineeringl. SE-11, no.
4, April, 1985, pp. 367-375.

Macedu.H.D, Larsen.P.G and Fitzgerald.J. “IncremleBevelopment
of a distributed Real-Time model of a cardiac pgcsystem using
VDM” University of New Castle upon Tyne, computingcience,
Technical Report Series, No. CS-TR-1059, Novembér72

J.-R. Abrial. “The B-Book, Assigning programs to anéngs”.
Cambridge UniversityPress, 1996. ISBN 0521 4961@&fi(back).

J. M. Spivey. The Z Notation. Series in CorgiScience. Prentice-
Hall, 1989.

Glenford , J. Myers. “The art of software tagt Wiley series in
business data processing, John Willey and sor8,19

Singh.H, M.Conrad and S. Sadeghipour. “Teseadesign based on Z
and the classification-tree method” .IEEE, 1997

International Scholarly and Scientific Research & Innovation 4(4) 2010

735

1SN1:0000000091950263

