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Abstract—This paper proposes an efficient finite precision block floating FIR filters when realized in finite precision arithmetic with
point (BFP) treatment to the fixed coefficient finite impulse response (FIR) two widely known data formats, namely, fixed-point (FxP)
digital filter. The treatment includes effective implementation of all the three and floating-point (FP) representation systems, by investigat-
forms of the conventional FIR filters, namely, direct form, cascaded and par- ing the associated quantization errors [1], [6]-[8], [13], [18],
allel, and a roundoff error analysis of them in the BFP format. An effective [23], [28], [37]. In all these finite precision studies about
block formatting algorithm together with an adaptive scaling factor is pro- FIR filters, however, it is found out that incorporating FxP
posed to make the realizations more simple from hardware view point. To format in any implmentational scheme gives the provision to
this end, a generic relation between the tap weight vector length and the input take advantages like less computational complexity and powerblock length is deduced. The implementation scheme also emphasises on a

comsumption. However, the main drawback of this arithmeticsimple block exponent update technique to prevent overflow even during the
is the limited dynamic range. Such a problem can be eludedblock to block transition phase. The roundoff noise is also investigated along
using FP format by paying the price of increased hardwarethe analogous lines, taking into consideration these implementational issues.
complexity. In a few other studies, efforts have been madeThe simulation results show that the BFP roundoff errors depend on the sig-
to carry out the filter implementation with a viable alternativenal level almost in the same way as floating point roundoff noise, resulting in

approximately constant signal to noise ratio over a relatively large dynamic of normalized FP concept, called, block-floating-point (BFP)
range. representation [41], [38] where the incoming data is parti-

tioned into non-overlapping blocks and depending on the rela-Keywords— Finite impulse response digital filters, Cascade structure,
tive magnitudes of the data samples in each block, a commonParallel structure, Block floating point arithmetic, Roundoff error.
exponent is assigned. Thus the usual filtering computations
under this arithemtic can be carried out in a FxP like man-I. INTRODUCTION
ner while the common exponent provides the required wider

INITE impulse respone (FIR) digital filters, in general, ex- dynamic range. To capitalize these benefits by employing the
hibit certain desirable characteristics those are needed toF aforesaid BFP format, some studies have concentrated on the

ensure proper implementation in hardware. These include sta- roundoff error properties of the same [2], [22], [30]-[33] in
bility and realizability with appropriate finite delays. Among order to find out more deterministic error bounds for such re-
the other advantages of FIR filters, a few mentionable ones alizations. However, to the best of our knowledge, no work
are the easeness to design exactly linear phase filters which is has so far been reported in the literature with BFP treatment to
very useful for speech processing and data transmission and direct, cascade and parellel forms of FIR filter together with a
the characterization of finite precision roundoff error which deterministic view proposing a detailed operation that include
can be made small enough for nonrecursive realizations. Al- (a) investigating the mutual relationship of filter length and
though FIR filters also suffer from limitations like the impulse input block length,
response duration must adequately approximate sharp cut-off (b) an optimum adaptive scaling factor for BFP formatting to
filters, which, in turn, implies a large amount of processing, prevent overflow,
nevertheless, for its numerous advantages, such filters have (c) an exponent update mechnism for implementational ease-
been frequently utilized in many signal processing applica- ness, and,
tions since the last five decades. An alphabetical list of many (d) finding the lowest possible combinational error that
important works among these is given in the references [1]- emerges from finite precision analysis.
[46]. Some of these studies have dealt with implementational

In this paper, we propose efficient realizations of fixed co-issues [1], [5], [15], [19], [20], [21] mainly concerning with
efficient direct form, cascaded and parallel FIR digital filtersdifferent types of FIR structures, while some other have attem-
employing the BFP arithmetic considering all the aforesaidpeted to design optimal FIR structures [24]-[27] using different
points so that the treatment becomes deterministic in terms oftechniques such as integer programming, block-Z transform or
implementation and error bound. Towards this end, a lemmaover a discrete powers-of-two coefficient space. A few works,
has been proposed which does not restrict the block length toreported in the literature, focus on the performance analysis of
be equal to the filter length only but permits it to be longer

Manuscript received Janaury 2, 2006. as well. To update the exponent(s) upon arrival of new data
A. Mitra is with the Department of Electronics and Communication En- sample(s), a block-by-block updating strategy is adopted togineering, Indian Institute of Technology (IIT) Guwahati, North Guwahati -

781039, India. E-mail: a.mitra@iitg.ernet.in. make the suggested scheme more attractive from the practical
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implementation point of view. An adaptive scaling factor is by selecting [22]
suggested to prevent overflow in the filtering process when the

L¡1Xmantissas are taken either from a single block or from two ad-
S ¸ S = dlog ( jw j)e (3)min 2 kjacent blocks during the interblock transition. Additionally, the

k=0behavior of associated roundoff noise is investigated with ap-
propriate finite precision BFP formats for the filter coefficient where ‘d:e’ is the so-called ceiling function, meaning rounding
vector as well as the input data vector and it is observed that up to the closest integer. Note that, if (B + one sign) bits ared
the simulation studies of the proposed realization have con- used to represent each mantissa within the block and if (B +°
firmed acceptable SNR characteristics over a wide dynamic one sign) bits are used to account for the block exponent, then
range. effectively, under BFP system, each sample can be equivalently

The paper is organized as follows. Section II briefly dis- represented with (B + 1) + (B + 1)=N bits because thed °
cusses about the BFP arithmetic fundamentals. The proposed block exponent is taken only once for the whole block. This
implementation of direct form FIR filter with BFP arithmetic particular strength makes this format more considerable than
is dealt with in details in Section III and the similar idea is FxP or FP systems.
extended for cascaded and parallel realizations in Section IV.
Section V gives a detailed analysis of roundoff noise in finite III. THE PROPOSED IMPLEMENTATION OF THE DIRECT FORM
precision for all the three realizations including several error FIR FILTER WITH BFP ARITHMETIC
bounds. The paper is concluded by summarizing the impor- In the suggested method, we first format the filter coefficienttant concepts introduced here in Section VI and with another Ãvector in the BFP representation as w = w:2 where Ã is anew technique, where active investigation is still going on, in block-exponent and is chosen so as to ensure that each jw j <kAppendix.

1, k = 0; 1; :::; L ¡ 1. For such a choice of filter coefficient
mantissa vector, eq. (2) is changed toII. THE BFP ARITHMETIC FUNDAMENTALS

°+ÃWe briefly describe the necessary background material first. y(n) = [w x(n) + ¢ ¢ ¢+ w x(n¡ L+ 1)]:20 L¡1
In [31], a BFP arithmetic and the finite wordlength proper- °+Ã= y(n):2 (4)
ties of the same are studied at length. It has been stated
there that the BFP representation can be considered as a spe- and eq. (3) takes the form of
cial case of FP format, where the incoming data are grouped
into nonoverlapping blocks of N consecutive samples and each S ¸ S = dlog Le (5)min 2

block has a joint scaling factor corresponding to the data sam-
as each jw j < 1, k = 0; 1; :::; L¡ 1.kples with the largest magnitude in the block. In other words,

We next partition the input data into non-overlapping blocksgiven a block vector x = [x ; :::; x ], it can be represented1 N
° ° ¡° of N samples each and for any ith block (i 2 Z), the blockas x = [x ; :::; x ]:2 = x:2 where x (= x :2 ) represent1 N k k

exponent is assigned asthe mantissas for k = 1; 2; :::; N and the block exponent ° is
defined as

° = ex + S (6)i i i° = blog Maxc+ 1 + S (1)2

where Max = max(jx j; :::; jx j), ‘b:c’ is the so-called floor where1 N

function, meaning rounding down to the closest integer and the ex = blog M c+ 1 (7)i 2 i

integer S is a scaling factor needed to prevent the overflow
andduring filtering operation. For the presence of S, the range of

M = maxfjx(iN)j; :::; jx(iN +N ¡ 1)jg (8)¡S ithe mantissas are given as jx j 2 [0; 2 ). Note that such ak

scaling term is not needed in simple BFP format data repre- with x(n) being the input sequence, Z denoting the set of
sentation and thus the mantissa range would be jx j 2 [0; 1) integers and S being the proposed adaptive scaling factor.k i

in that case. However, the scaling factor S can be calculated Having a common ° computed for any ith block, the blocki

from the inner product computation during filtering operation. variables are expressed as
The filter output is usually expressed as an inner product in

°ix(n) = x(n):2 ; n 2 (iN; :::; iN ¡N + 1); i 2 Z: (9)BFP format as
Ty(n) = hw;x(n)i = w x(n) The above block separation and BFP formatting process is

° explained diagramatically in Fig. 1 with an example ofN = 4.= [w x(n) + ¢ ¢ ¢+ w x(n¡ L+ 1)]:20 L¡1
Since the exponent ° is fixed for the block under considera-° i= y(n):2 (2)

tion, calculations involving the block mantissas can be carried
where w is the length L fixed coefficient vector of the direct out in the usual fixed point like manner within a block but ad-
form FIR filter and x(n) is the data vector at the nth index, justments are necessary during the transition from one block
represented in BFP format. For no overflow in y(n), we re- to another and hence we need to track the change in the value
quire jy(n)j · 1 at every time index, which can be satisfied of each ° in one separate register. For this purpose, a blocki
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x x x x x x x x ¢ ¢ ¢1 2 3 4 5 6 7 8

(Incoming data sequence) Block
separationBlock 1 Block 2

¡¡x x x x x x x xN = 41 2 3 4 5 6 7 8Highest @@magnitude
search (Normal blocks with block-length N=4)

and FP ° °1 2x = x :2 x = x :2(highest) (highest)3 3 8 8formatting @@ * *
¡¡ x x x x x x x x1 2 3 4 5 6 7 8

BFP(Floating point formatting to highest magnitude block variable)
formatting

¡¡° °1 2x x x x x x x x2 21 2 3 4 5 6 7 8 @@

(Block floating point formatting to
block variables with exponents ° and ° )1 2

Fig. 1 Input data partitioning and BFP formatting mechanism for N = 4.

exponent update term u (n) (jth term, at time instant n) is for overflow prevention. The combined approach is stated inj

placed after each delay element, determined by the following the form of an algorithm below.
equation

Algorithm: Assign S = dlog Le as the scaling factoru (n) = ° ¡ ° (10) min 2j x(n¡j) x(n)

to the initial data block and while considering about any gen-
where ° and ° represent the exponent values asso-x(n¡j) x(n) eral S for i ¸ 1, assume S ¸ S and do the following:i i¡1 minciated with x(n¡ j) and x(n) respectively at any time instant If ex ¸ ex ,i i¡1
n. Fig. 2 shows the BFP implementation of a 3-tap FIR then assign S = S , s.t. ° = ex + Si min i i mindigital filter with two such update terms, u (n) and u (n).1 2 else (i.e., ex < ex )i i¡1Here, the primed and unprimed entities symbolize the finite assign S = (ex ¡ ex + S ), s.t. ° = ex + S .i i¡1 i min i i¡1 minprecision and infinite precision quantities respectively. From
the above figure, it is easily understood that when the filtering Note that when ex ¸ ex , we can either have ex +S ¸i i¡1 i minoperation involves data from only one block, the update terms ° (Case A) implying ° ¸ ° , or, ex + S < °i¡1 i i¡1 i min i¡1assume zero value. On the other hand, during transition from (Case B) meaning ° < ° . However, for ex < exi i¡1 i i¡1one block to another, when the filter operates on segments (Case C), we always have ° · ° . The above algorithmi i¡1of data from two adjacent blocks, the update terms need to leads to the following theorem.
be carefully determined so that no overflow occurs during the Theorem 1: The exponent update term will always be non-
transition phase. As for example, consider the situation where positive or zero preventing the possibility of overflow in the
ex ¸ ° . Then, to avoid overflow within the ith block,i i¡1 filtering operation during the transition from (i ¡ 1)th block
we choose ° = ex + S . Next, consider filtering oper-i i min to ith block as well as within the ith block, if
ation during the transition phase at an index n = iN + k,

S = maxfdlog Le; (° ¡ ex )g: (11)k = 0; 1; :::; L¡ 2. This will involve the following data sam- i 2 i¡1 i
0 0 Proof: The proof is trivial from all the three conditionsples from the (i¡1)th block: [x (iN¡L+k); :::; x (iN¡1)]

of the above algorithm.and rest from the ith block. To conform to the BFP format
Next we need a detailed study to find out a relation betweenduring the transition phase too, we employ rescaling of the
the input block length N and the filter length L in order toabove stated data segment from the (i¡ 1)th block as per the

0 0¡(° ¡° )i i¡1 investigate the implementational easeness that comes out fromfollowing: x (n) ! 2 :x (n), where n denotes the
the correlation of these two, if any. This is stated in the formrelevant time indices in the (i¡ 1)th block. Note that rescal-
of the lemma given below.ing reduces the magnitudes of the samples within the domain

Lemma 1: At any time index n, at the most (j+2) adjacentof the filter and thus ensures that no overflow occurs either
blocks are involved in the filtering process, ifby the rescaling process or by the filtering operation during

the block-to-block transition. For the case ex · ° too, ai i¡1 L¡ 2 L¡ 2b + 1c · N · b c 8j 2 Z (12)similar treatment can be worked out. Thus we need to employ p
j + 1 jan adaptive scaling factor in the initial block formatting algo-

rithm to have the non-positive update terms in any situation where Z is the set of all positive integers except zero.p
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0 0 0x (n) x (n¡ 1) x (n ¡ 2) Initially set allx(n) x(n)Block- - ¡1 ¡1Formatting Q Z Z u (n) = 0 and startj
Algorithm

u (n) u (n)1 22 2 the filtering processA ¢ A ¢A¢ A¢
?

-www Put count = N210 ??? ² ¯² ¯² ¯
?± °± °± ° ¾count = count¡ 1

? ? ?
?Q Q Q H© H© Is H© H© count = 0?H ©H © NoYes H ©@ H ©? ?@@

Check u (n) Put u (n) = 0@ 1 1@ ?² ¯P@R@ - ± ° ? ?
° +Ãi2 Shift the value ofUpdate all u (n)0 j©© ¾rŷ (n) HH u (n) to u (n)j j+1with this value

immediately for j = 1; :::; L¡ 2
Fig. 2 Block floating point implementation of a 3-tap FIR digital filter, where

‘Q’ indicates the quantization operation.

Fig. 3 A flow chart for efficient block exponent update technique.
Proof: Consider the nth time instant when the filter

output
Having a generalized relation between the filter length and

y(n) = x (n)w + hw ;x i+ x (n)w (13)k 0 f i¡1 k¡L+1 L¡1 block length, it would now be appopriate to investigate a suit-
able realization scheme of exponenet update terms. To eludewhere the vector x = [x (n); ¢ ¢ ¢ ; x (n)] repre-i¡1 k¡1 k¡L+2 the evaluation of the update term after each time instant, wesents any (i¡ 1)th block, w = [w ; ¢ ¢ ¢ ; w ] and the dataf 1 L¡2 now propose an efficient exponent updating technique whichsamples x (n) and x (n) are within the ith and (i¡2)thk k¡L+1 updates all the u (n) by actually updating only u (n) after aj 1blocks respectively. Quite clearly, the above filtering index in-
periodic interval, provided the block length is chosen as statedcorporates 3 consecutive blocks when the relationN · (L¡2)
in the above corollary. Usually, we assume a block lengthLis true and the same continues for N ¸ b c. Next, consider2 greater than the filter coefficient length to take the longer ef-another mth time index with the output
fects of the fixed point operational advantages for intra-block

y(m) = x (m)w + hw ;x i+ hw ;x i filtering. Utilizing such a relationship between N and L, itk 0 f1 i¡1 f2 i¡2
can easily be understood from Fig. 2 that whenever u (n)1+x (m)w (14)k¡L+1 L¡1
assumes a nonpositive value, the value should be immediately

where the vector x = [x (m); ¢ ¢ ¢ ; x L (m)] repres-i¡1 k¡1 transferred to all the other update registers and as long ask¡ +12

nts (i ¡ 1)th block, the (i ¡ 2)th block vector x = u (n) = 0 (it will remain zero for N ¡ 1 time instants after1i¡2
taking a nonzero value), the null value has to be propagated[x L (m); ¢ ¢ ¢ ; x (m)], w = [w ; ¢ ¢ ¢ ; wL ],k¡L+2 f1 1k¡ ¡12 2

to other update registers by sequential delay elements, elimi-w = [wL ; ¢ ¢ ¢ ; w ], and x (n) and x (n) are withinf2 L¡2 k k¡L+1
2 nating the need of update operation after each time instant. Athe ith and (i¡ 3)th blocks respectively (with the assumption

flow chart is given in Fig. 3 to implement such a mechanism.of (L ¡ 2) as even). The above equation then holds true for
L¡2 L¡2 However, the situation is not so simple in the cases that in-the integer range b + 1c · N · b c and the filtering3 2 volve more than two blocks for operation at a time and henceprocess can be further subdivided in the same way with shorter

require more complicated exponent update mechanism.block lengths. Thus follows the generalized statement of the
Considering the above discussed implementational issues,above lemma.

the section can then be concluded with a general commentCorollary 1: When the input sequence block length is
on the suitability of such BFP realizations in the form of thegreater than or equal to the filter weight length minus one,
following theorem and, towards the end of this paper, as ai.e., N + 1 ¸ L, the filtering operation involves at the most
corollary.two blocks at any time index p.

Theorem 2: Among all the digital filter structures, mostProof: Putting j = 0 on the left hand side non-equality
suitable to BFP realization are those which are canonic withof eq. (12) and noticing the fact that there exist some time
respect to delays.indices when the filtering operation must involve two blocks,

however lengthy a block may be (except for the case N !1 Proof: A digital filter structure is said to be canonic
which is equivalent to fixed point case), we get the above if the number of delays in the filter structure is equal to the
corollary. order of the transfer function. From block variable formation
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view point in BFP arithmetic, this is desirable to form the be written as
MXsame only once for effective implementation. A class of the 0H (z) = H (z): (16)peqequivalent structures of infinite impulse response (IIR) filters
p=1provide this canonic property and therefore, it also offers the

Here, unlike the cascade form, we need to add up all thesame advantage when implemented using finite precision BFP
outputs, which, in turn, necessitates the structure to scale allarithmetic. On the other hand, both direct and transposed

1the input sections by in order to prevent overflow at theform FIR filters are canonic with respect to delays and provide M
final stage. The roundoff error analysis of such a structure,a straightforward BFP realization. Thus follows the above
however, is easier in comparison with cascade structures.theorem considering the realization issues.

In the next Section, we would deal with the finite preci-Note that from quantization noise consideration, both the
sion roundoff noise investigation of all these three differentclasses of FIR filters offer a downright BFP quantization noise
structures, starting with the direct form and then graduallytreatment (discussed in Section V) with almost identical finite
extending the treatment to cascade and parallel structures.precision behavior. However, analyzing the canonic class IIR

filters often becomes tedious for two basic reasons. Firstly, it
V. A QUANTIZATION ERROR ANALYSISis difficult to search a structure having the least quantization

effects in finite precision. Secondly, investigating block vari- A. Rounoff Error Model
ables as intermediate data functions is more hard than to do The direct application of the roundoff error models usedthe same with primary variables as in FIR case. At the end with FxP and FP format is not possible for the case of BFPof Section V, a generalization of this effect is presented in the representation. The additive roundoff error model of FxP sys-form of a corollary. tem can not be used as BFP is a scaled number representa-

tion system with distinct block exponents for different blocks.
IV. EXTENSION TO THE CASCADED AND PARALLEL Again, the relative roundoff error model of FP arithmetic can

REALIZATIONS not be utilized because BFP format mantissas are not normal-
ized. Therefore, the BFP quantization error is modeled with aSo far we have only considered the efficient implementation
scaled additive roundoff error model, defined as followsincluding how to prevent the possibility of overflow during the

filtering operation taking into account the intra-block and inter-
® = Q[x ]¡ xi iblock data samples for direct form FIR filters. In this section,

°i= (Q[x ]¡ x ):2i iwe extend our treatment to cascade and parallel structures of
°i= e :2 (17)direct form FIR filters. m

where Q[:] denotes the quantized value of a quantity and emA. Cascade Structure is the mantissa quantization error which can be assumed to
be an uncorrelated random variable. The block exponents °If M different direct form FIR sections are adjoined in cas- i

are also assumed to be uncorrelated. If rounding-to-nearest iscade fashion with respective transfer function (TF) H (z),p

used as the rounding method, the roundoff error ® has zerop = 1; 2; :::;M , the resultant TF for such a cascaded structure
mean and variancecomes as

MY N°¡2B Xd2H (z) = H (z) (15)eq p 2 2 2° 2°i l¾ = ¾ :E[2 ] = : p (° )2 (18)° l® emp=1 12
l=1

where each individual sections are usually chosen as second where (one sign + B ) bits have been used to represent eachdorder sections (to realize a complex zero with real filter coef- datum mantissa, p (° )[l = 1; :::; N ] is the probability mass° l °ficients) or as first order sections for simplicity. One possible function of the block exponents and N is the available dis-°difficulty that arises with cascade form is deciding about pole- tinct block exponent levels. Deduction of p (° ) is the most° lzero pairing for IIR filters. However, for FIR filtering, such a tedious job in the roundoff error model and thus it is approx-
case is not of our interest. Also, in cascade structure, no over- imated using some marginal distributions which usually leads
flow will occur if all the individual sections ensure jy(n)j · 1 to good results. If we assume that the signal is Gaussian dis-
at every time index, which is already shown in the proposed 2tributed (i.i.d.) with variance ¾ , then the distribution of blockudirect form realization. Nevertheless, a finite precision noise exponents becomes
usually comes in this structure modeling the independent noise

1 ° ¡S° ¡S minlminl 2sources as additive noise sources, which is discussed in Sec- 2 N N2p pp (° ) = [erf( )] ¡ [erf( )] (19)° ltion V. 2¾ 2¾u u

with erf(x) being the error function, i.e.,B. Parallel Structure Z x
22 ¡tFor M different direct form sections with the same TFs as perf(x) = e dt: (20)

¼ 0mentioned above, the resultant TF with parallel realization can
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B. Roundoff Error Calculation of the Direct Form FIR Filter
Structure

We start the roundoff noise analysis with direct form filters.
From Fig. 2, it can be easily understood that the roundoff
error variance in the output of a direct form FIR digital filter is
contributed by three basic quantization processes [6], namely,
² the input data sample(s) quantization, better known as A-D
conversion noise,
² the quantization of the filter coefficients, and,
² the uncorrelated error due to rounding of arithmetic opera-
tions in calculating the filter ouput.
These three types of noise, in connection with the proposed
implementations, are discussed below. Note that the correlated
roundoff noise, known as limit cycles [36], mainly concerns
with IIR filters and therefore is beyond the scope of our con-
sideration.

B.1 A-D Conversion Noise:

The roundoff noise variance in the output due to kth input Fig. 4 SNR diagram for quantizing the uncorrelated Gaussian data with 1+7
quantization point is bit FxP, 1+7+(1+3) bit FP and 1+7+(1+3)/N bit BFP format, with

N=8 and N=16.
2 2 2 2° 2 2i¾ = jw j ¾ :E(2 ) = jw j ¾ (21)k ki;k e ®m| {z }

B.2 Filter Coefficient Quantization Noise:2where ¾ refers to the variance of roundoff error ® as in-®
For any arbitrary phase direct form filter, the total error duedicated in eq. (18). As the different roundoff error sources

to filter quantization comes asare assumed to be uncorrelated, the total output roundoff error
variance for any arbitrary phase direct form digital filter, due ¡2Bc22to input data quantization, becomes ¾ = L (24)c;total 12

L¡1X
2 2 2 using the independence assumption, where (one sign + B )¾ = ¾ jw j : (22) cki;total ®

bits are used to represent each coefficient. For the lineark=0

phase direct form filters, assuming L even, the above equation
¡2BcFor the linear phase case, w = w , for k 2 [0; L ¡ 1]k L¡1¡k 22(24) changes to ¾ = L . A similar kind of boundc;total 24and a marginally different version of the direct form with fewer is obtained by calculating the total coefficient roundoff errormultipliers, can be derived. Assuming L even in this case, eq. variance in the frequency domain as(22) changes to

L¡12X
2 2 2¾ = ¾ jw j : (23) Lki;total ® ¡12¡2B Xc2 L¡ 1k=0 2 j! 2ª (e ) = 4cos [( ¡ k)!]c;total 12 2Performances of A-D conversion noise in BFP format along k=0

Lwith FP and FxP formats have been studied by quantizing ¡12¡2B Xc2 ! 12 2uncorrelated Gaussian data to all these number representation = [4cos + 4cos (k + )!]:
12 2 2systems, using same number of mantissa bits per sample for k=1

all of these three formats. The SNRs are plotted in Fig. 4 (25)
as a function of the input signal level. From the theory of
BFP SNR calculation, we got approaximately 45.7 dB (for An example of filter coefficient quantization effect with
N=8) and 43.8 dB (for N=16), which have shown a very good 1+7+(1+3)/20 bit BFP format for a length 20 FIR equirip-
agreement with the simulated results. Fig. 4 also indicates that ple low pass filter is shown in Fig. 5, which clearly depicts
when the SNR of FxP system decreases with the reduction in that the quantization noise is well within the acceptable limit
signal level, the SNRs of BFP and FP system remain almost within and beyond passband.
constant over a large dynamic range. Additionally, with a

B.3 Filtering Operation Roundoff Error:small block length, the SNR of BFP format almost reaches
the SNR of FP representation system. Under this, there are three different types of errors [2] those

are frequently meet with during the operations for any linear
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Fig. 5 Coefficient quantization effects on a length 20 direct form FIR equirip-
ple low pass filter with 1+7+(1+3)/20 bit BFP format.

system. These are as follows:
(a) Block Denormalization Error: We get this error, if, due Fig. 6 Cascade structure in finite precision. (a) The cascade form with
to exponent increament, any mantissa register has to be right- additive errors, and (b) the equivalent form.
shifed and the LSB is lost. Here, the total error can be ex-
pressed as

L¡1X¡B +°dj´ j < 2 jw j: (26) for an arbitrary phase direct form FIR filter andDN k

k=0
L¡12 ¡2BX cL 2Such an error occurs rarely in the case of FIR filters. 2 2 2 2°i¾ = ¾ ( jw j + )E(2 ) + L (31)ktotal em(b) Multiplication Quantization Error: This error occurs if 2 24
k=0quantization operation is done right after multiplication and is

for a linear phase filter, assuming L even. The finite preci-bounded by
¡B +°d sion roundoff error investigation approach, presented in thisj´ j < L:2 : (27)M

subsection, can be extended to cascade and parallel structures(c) Addition Quantization Error: This error comes into with some additional considerations. This is discussed next.calculation by performing quantization right after addi-
tion/subtraction and is bounded by C. Roundoff Error Analysis of Cascaded and Parallel Form

¡B +°dj´ j < 2 : (28) C.1 Cascaded Structure:A

A finite precision cascaded structure with independent ad-We have preferred quantization after each multiplication and
ditive error models is shown in Fig. 6(a) and the equivalentthus only error bound (b) has to be taken into account. Thus,
parallel form of the same is shown in Fig. 6(b), where,in our case, the rounding operations after every multiplication

in the process of calculating the filter output adds up to the MYtotal roundoff error variance G (z) = f H (z)jj 2 [1;M ]; j 2 Zg: (32)j p

L¡1 p=j¡2BX d22 2° 2 2°i i¾ = E(2 ) ¾ = L E(2 ) (29)f;total f For modeling the cascaded form in such a way, the overall12
k=0 error variance comes as

for any arbitrary phase direct form FIR filter and we get 2 2 2 2 2 2 2 2¡2B ¾ = ¾ G (z)+¾ G (z)+¾ G (z)+ :::+¾ (33)d22 2° cas total 2 e 2 e 3 ei 1 2 M¾ = L E(2 ) for those of the linear phase (as-f;total 24
suming L even). where, any error variable E (z)$ e (n) denotes the Z trans-p p

2Hence, the total output error variance comes as form pair and ¾ the corresponding variance. As before,ep
2¾ denotes the quantity as presented in either eq. (30) or2 2 2 2 total¾ = ¾ + ¾ + ¾total i;total c;total f;total (31), depending upon the choice of phase of the direct form

L¡1 ¡2BX c filters.22 2 2°i= ¾ ( jw j + L)E(2 ) + L (30)kem 12
k=0
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factor has been suggested to prevent overflow in the filter-
ing process when the mantissas are taken either from a single
block or from two side-by-side blocks during the interblock
transition. A roundoff error analysis has also been carried out
for all the three structures. For this, appropriate finite preci-
sion BFP formats for the filter coefficient vector and the input
data vector have been adopted and the filtering algorithm has
been recast in terms of the chosen formats. The simulation re-
sults have also confirmed sufficient SNR over a large dynamic
range. Currently, attempts are being made to extend this ap-
proach to the more challenging area of parallel interconnection
of cascaded sections for improved performance at very high
order for certain applications and is discussed in brief in the
Appendix.

AppendixFig. 7 Parallel structure in finite precision.
Parallel Interconnection of Cascaded Subfilters

C.2 Parallel Structure: A recent paper [44] has proposed a class of IIR digital filter
structures that make a compromise between standard cascadeFig. 7 shows the finite precision parallel connection of the
and parallel structures. It has been demonstrated there that insame direct form FIR sections with independent additive error
cases where the standard cascade and parallel forms are some-models. Here, the error calculation is quite straightforward as
what unusable, the proposed hybrid structure, termed as par-it sums up all the individual error variences. However, for

02 allel interconnection of cascaded subfilters (PICS), performseach section, here we have the error variance of ¾ insteadtotal
2 well and in many applications like virtual reality, auralisation,of ¾ as each section is scaled a-priori by a scaling factortotal
1 musical instrument synthesis and high quality speech process-of in order to prevent overflow in the final output. In thisM

ing, where all-pole digital filters of order higher than 50 arecase, the overall error variance therefore comes as
needed, the characteristics of such hybrid PICS structure has

MX been investigated with satisfactory results. The structure basi-02 2 2¾ =M¾ + ¾ : (34)par total e cally exploits the incomplete partial fraction expansion (IPFE)p

p=1 algorithm [14] to a list of poles in complex conjugate pairs
¡1so that it returns a polynomial in z for each subfilter that

Finally, a general comment can be made about the BFP is implemented as an FIR equaliser. In other words, given
realization of such digital filters in the form of the following a rational polynomial A(z) = u(z)=q(z), the IPFE algorithm
corollary. finds the numerator polynomials h(z) and f(z) of a sum of

Corollary 2: Finite wordlength effects of FIR digital and/or two lower order rational functions
adaptive filter structures in BFP arithmetic are easier to anal-

h(z) f(z)yse, in comparison with IIR structures, due to their canonic A(z) = + (35)
r(z) s(z)property and non-correlated roundoff error behavior.

Proof: Combining Theorem 2, eq. (30) and (31), the where r(z)s(z) is a given factorization of q(z). The resultantabove corollary can easily be observed. PICS structures show lower roundoff noise levels than the
actual cascade forms, and are more accurately synthesised thanVI. CONCLUSIONS the parallel forms.

An efficient finite precision BFP realization of the fixed co- Our focus has been to extend this notion for the case of
efficient direct form FIR digital filter has been proposed and FIR filters in order to enjoy the above mentioned advantages
the approach has been extended to cascade and parallel struc- with such a PICS form, which would consist of all first order
tures. The proposed scheme enjoys higher flexibility in terms FIR sections in all the parallel paths and each branch would
of the choice of block length which is not preconditioned to be cascaded with k number of first order FIR sections to im-

¡kbe equal to the filter length and a detailed analysis showing plement h(k)z , provided h(k) is factorizable k times with
the mutual relationship of these two has also been carried out, common factors. In particular, if h(k) = h :h ¢ ¢ ¢ :h , any1 2 k

keeping in mind the implementational simplicity, which, in FIR order can be realized in this PICS form with simple first
turn, doesn’t allow data samples to be taken from more than order sections only. Further, other ways are also possible to
two blocks at any time instant. A block exponent update mech- factorize any h(k) with less number of common factors and
anism has been proposed where the block exponent is updated active investigation on the same is now being carried out by
only once for each block, provided, the input sequence block the same author. As the simulation results are in preliminary
length follows the above realtionship. An adaptive scaling stage, they are thus not shown here.
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