Nutrient Modelling to Fabricate Dairy Milk Constituents: Let Milk Serve More Than a Food Item

M.Aasif Shahzad*, N.Mukhtar, M.Sarwar

Abstract—Dietary macro and micro nutrients in their respective proportion and fractions present a practical potential tool to fabricate milk constituents since cells of lactating mammary glands obtain about 80% of milk synthesis nutrients from blood, reflecting the existence of an isotonic equilibrium between blood and milk. Diverting milk biosynthetic activities through manipulation of nutrients towards producing milk not only keeping in view its significance as natural food but also as food item which prevents or dilutes the adverse effects of some diseases (like cardiovascular problem by saturated milk fat intake) has been area of interest in the last decade. Nutritional modification / supplementation has been reported to enhance conjugated linoleic acid, fatty acid type and concentration, essential fatty acid concentration, vitamin B12& C, Se, Cu, I and Fe which are involved to counter the health threats to human well being. Synchronizing dietary nutrients aimed to modify rumen dynamics towards synthesis of nutrients or their precursors to make their drive towards formulated milk constituents presents a practical option. Formulating dietary constituents to design milk constituents will let the farmers, consumers and investors know about the real potential and profit margins associated with this enterprise. This article briefly recapitulates the ways and means to modify milk constituents keeping an eye on human health and well being issues, which allows milk to serve more than a food item.

Keywords—Nutritional modification, fabricating milk composition, human health.

I. INTRODUCTION

Dairy milk constituents in context of their quality and quantity may reflect valuable information about the respective proportion of dietary nutrients [1]. The same has also been supported by the isotonic equilibrium which exists between blood and milk. Blood supplies about 80% of the nutrients for milk biosynthetic activities [2]. Limiting any of these will reduce milk production and change its composition. To cash, this natural flexibility of milk nutritional components, multiple efforts have been made to modify milk constituents in context of human health with varying degree of success [3], [4], [5].

In developed countries like USA, every day dairy or dairy product food items has about 15–20% of human intake of total fat, 25–33% of saturated fat and about 15% of dietary cholesterol [6]. Currently, about 2% of total fatty acids (FA) in milk are polyunsaturated and about 70% are saturated, but less than 40% of saturated FA is considered to be less deleterious to healthy. Higher intake of saturated fat has been believed to have association with cardiovascular disease risk factors [7], [8]. However, the values of milk fat constituents can be modified by changing the animal diets [7], [10]. Furthermore, concentration of desirable milk constituents like conjugated linoleic acid (CLA) can also be increased through dietary modification [4],[11],[12]. The CLA, a potential anti-carcinogen, inhibits the growth of a number of human cancer cell lines, suppresses chemically induced tumour development, inhibits cholesterol induced atherosclerosis in rabbits, mediates immune function and enhances lean body mass [13],[14]. Likewise, increasing concentration of vitamins (B12 & C) and some micro minerals (Se, Cu, I & Fe) would play their role to counter the health threats to human well being. Keeping in view the human health issues, fabricating dairy feed to design desirable milk constituents has gain significance attention in the last couple of decades.

Synchronizing dietary nutrients aimed to modify rumen dynamics towards synthesis of nutrients or their precursors to make their drive towards formulated milk constituents presents a practical option. Furthermore, formulating dietary constituents to design milk constituents will open new avenues for the farmers and food scientists as well to invest and harvest benefits and profits associated with this enterprise. This article is an attempt to briefly recapitulate the ways and means to modify milk constituents keeping an eye on human health and well being issues, which allows milk to serve more than a food item.

II. BIOACTIVE MILK CONSTITUENTS

Milk contains numerous health benefits due to presence of bioactive components like oligosaccharides, conjugated linoleic acid, nutraceuticals and enzyme [15], [16]. Fabricating dietary nutrients for improved milk constituents for better human health has been area of intense research in the last decade [17]. Influence of dietary component on milk components have been briefly reviewed as under.

III. DYNAMICS OF MILK FAT

Rumen ecology can be altered through nutritional manipulation which can be diverted to alter the content and composition of milk fat [18]. For fats and oils, bovine milk is considered the sixth largest source in world [19]. Animal products are considered the main source of saturated fat and cholesterol content in human diet. Milk fat is less stable milk constituent and offers a practical platform to enhance or modify milk content and constituents as milk fat percentage can be increased over a range of 3 percentage compared to milk protein which is only 0.5% in response to dietary manipulation. Milk on dry basis contains about 27% fat content with the majority of the saturated fatty acids (65%). About 50% calories in milk come from fat. Jenkins and McGuire (2006) reported that an ideal milk would contain no more than 8% saturated fatty acids, less than 10% polyunsaturated fatty acids, and the remainder (82%) as monounsaturated fatty acids [20]. There are multiple factors which influence the transfer of these dietary unsaturated fatty acids to milk, ruminal microorganisms and decreased absorption from intestine etc. So the knowledge of understanding and controlling fatty acid
destruction by ruminal microorganisms and the uptake and use of unsaturated fatty acids by the mammary gland provides the baseline information for designing the desire milk composition [20].

Medium- and long-chain saturated fatty acids are converted into monounsaturated fatty acids by stearoyl-CoA desaturase enzyme. In milk, higher proportions of monounsaturated fatty acids and conjugated linoleic acid are beneficial for human cardiovascular health. Cardiac risk by lowering the cholesterol in human being can be reduced by ensuring mono-unsaturated fatty acids and polyunsaturated fatty acids in the diet which can be manipulated through diet. Polynsaturated fatty acids are amides which may also contribute influence milk protein.

Reduced milk protein concentration by reducing mammary extraction of amino acids [24]. Berner (1993) reported a 7% drop in mammary blood flow by fat feeding which prevent increased removal of critical amino acids as milk synthesis increased [25]. Reduced milk protein concentration by reducing blood flow toward mammary gland which reduces extraction of blood amino acids. In neonate the gut is not simply an inert tube via which nutrients and bioactive substances pass from the mammary gland to the neonatal liver; it is also an organ of digestion and absorption capable of selection, reception, sorting, transformation, uptake, transfer, exclusion, degradation and excretion of substances that pass through it [27].

IV. MAMMARY GLAND IN CONTEXT OF DESIGNING MILK COMPOSITION

Designed milk composition can be achieved by nutritional manipulation and also by enhancing the nutrient uptake by mammary glands. Approximately 50 to 60% of the total fatty acids transferred and its quantity depend on composition, and degree of ruminal protection and digestibility.

Diets which contain the C16 to C18 fatty acids decrease the synthesis of C6 to C14 in mammary glands by increasing the amounts of C18 trans fatty acids which may inhibit lipogenesis and D-9 desaturase activity. Mammary secretory cell in mammary glands converts the stearic acid in to oleic acids through desaturase activity which is the product of ruminal biohydrogenation. Whole this process enhances oleic acid at the expense of saturated fatty acids in milk.

The Δ9-desaturase was the source of the cis-9,trans-11 CLA isomer in milk which has a health benefits for health especially anticarcinogenic properties. Ruminal biohydrogenation which was enhance the yield of the trans-11 isomer. Trans-11 arising from biohydrogenation in rumen, desaturated to cis-9,trans-11 CLA via the Δ9-desaturase via the mammary tissue. The CLA effects the synthesis and abundance of mRNA, a key mammary enzymes involved in de novo fatty acid synthesis.

V. MILK PROTEIN

Protein of milk is natural medium to deliver the essential micronutrients especially calcium and phosphate in addition to excellent source of amino acids and immunoglobulins [16]. The milk nitrogen has three bifurcation; casein (78%), whey (17%), and NPN (5%). DePeters and Cant (1992) reviewed that dietary alterations may have positive impact on milk and protein yields and has negative effects on protein content [23]. Forage diet ratio in ration reduces the milk protein. Rapidly fermentable carbohydrate has greater production of propionate and microbial protein synthesis thereby ensuring better supply of amino acid supply at post ruminal level and thereby yielding more milk and milk protein.

Milk protein increased from 2.85 to 3.27% as protein content in the diet increased from 15.0 to 19.5%. Protein content of milk increases 0.02 % for each 1 percentage increase in dietary protein [20]. It has also been noticed that despite ensuring adequate supply of amino acids in blood, the milk amino acid can’t be increased. This might be attributed to reduced mammary gland ability to capture blood amino acids efficiently, probably due to decreased blood flow towards udder. Therefore, improving blood flow towards mammary glands also seems to be a doable practice to enhance milk protein contents. An interesting relation between dietary protein and fat does exist which may also contribute influence milk protein.

On average, protein content in milk declined 0.03 percentage units for every 100 g of supplemental fat intake. High blood fatty acids from the fat supplement decreased the release of somatotropin, which reduced mammary extraction of amino acids [24]. Berner (1993) reported a 7% drop in mammary blood flow by fat feeding which prevent increased removal of critical amino acids as milk synthesis increased [25]. Reduced milk protein concentration by reducing blood flow toward mammary gland which reduces extraction of blood amino acids. In neonate the gut is not simply an inert tube via which nutrients and bioactive substances pass from the mammary gland to the neonatal liver; it is also an organ of digestion and absorption capable of selection, reception, sorting, transformation, uptake, transfer, exclusion, degradation and excretion of substances that pass through it [27].
VI. MILK CONSTITUENT AS ALTERED BY DIETARY MODIFICATION

Cereal grains and their by-products, are the main energy sources in ruminants ration and their variable lipid contents has direct impact on the fatty acid composition of the animal product like milk fatty acids [27]. Forage as diet is best source of unsaturated fatty acids in ruminants. It has been well documented that animals consuming fresh pasture will have a higher content of UFA in their milk than other cereals grains [10]. Grass is also good source of n−3 PUFA. Dewhurst et al. (2003) also reported high linoleic acid levels in milk due to white clover silage feeding than grass silage feeding [28]. Overall the grasses contain beneficial fatty acids [29]. Physical form of oilseed and different ingredient has desirable effect on fatty acids of milk. Oleic acid concentration in milk can be increased by addition of rapeseed oil [30], [31]. Higher concentration of C18:1 c-9 in milk was also because of efficient activity of desaturase by the mammary gland. A number of feed sources like lupin, naked oats, camelina, hemp and chia increase levels of beneficial UFA in dairy milk [17].

REFERENCES