Nanobiocomposites with Enhanced Cell Proliferation and Improved Mechanical Properties Based on Organomodified-Nanoclay and Silicone Rubber

Abstract—Bionanotechnology deals with nanoscopic interactions between nanostructured materials and biological systems. Polymer nanocomposites with optimized biological activity have attracted great attention. Nanoclay is considered as reinforcing nanofiller in manufacturing of high performance nanocomposites. In current study, organomodified-nanoclay with negatively charged silicate layers was incorporated into biomedical grade silicone rubber. Nanoparticle loading has been tailored to enhance cell behavior. Addition of nanoparticles led to improved mechanical properties of substrate with enhanced strength and stiffness while no toxic effects was observed. Results indicated improved viability and proliferation of cells by addition of nanofillers. The improved mechanical properties of the matrix result in proper cell response through adjustment and arrangement of cytoskeletal fibers. Results can be applied in tissue engineering when enhanced substrates are required for improvement of cell behavior for in vivo applications.

Keywords—Biocompatibility, Composite, Organomodified-Nanoclay, Proliferation

INTRODUCTION

In tissue engineering, a growing body of research deals with improvement of substrates to enhance cell functionality for in vivo applications. The cell-substrate interaction necessitates enhanced material properties to influence cell behavior including proliferation, morphology, cytoskeletal structure, and differentiation. Physico-mechanical properties of substrates have been shown to influence cell behavior [1, 2]. Such properties have been manipulated and modified by changing the chemical crosslinking factors [3, 4] or surface topography [5]. Min Lo et al. cultured 3T3 fibroblast cells on flexible polyacrylamide sheets and studied cell migration and spreading by change of surface rigidity. The flexibility of substrates was altered by bis-acrylamide as crosslinking agent [6]. Guo et al. similarly created polyacrylamide network by adding bis-acrylamide in order to achieve substrates with different elastic moduli to describe that tissue regeneration trend in biology is markedly influenced by rigidity of matrix surface [7]. Frey et al. prepared substrates made of polystyrene with locally micropillars to investigate how cell migration and morphology are controlled by surface topography [8]. Correspondingly the influence of matrix mechanical properties on glioma cells and neural stem cells were examined by Ulrich et al. [9] and Teixeira et al. [10].

Proteins such as collagen type I [11, 12] or fibronectin [11, 13] have been used to enhance cell adhesion. Surface modifications including plasma [12, 14] and UV [15] treatments have been alternative methods to improve cell attachment. However, such procedures are not economically reliable [16, 17]. In current study PDMS based substrate was modified by inclusion of different mass ratios of organomodified-nanoclay (O-MMT) particles and the resultant mechanical properties were evaluated, and effects of alteration in matrix mechanical properties on cell behavior were studied. For this O-MMT as the extending nanofiller [18] was dispersed in rubbery matrix that improved mechanical properties [19]. Then the response of endothelial cells to altered mechanical properties was analyzed.

II. MATERIALS AND METHODS

A. Preparation of nanocomposites

Medical grade silicone rubber (HTV) was used as the base material and mixed with clay nanoparticles, Cloisite 15A (Southern Clay Products, USA) with mass ratios of 1%, 2% and 3%. Dicumyl peroxide was employed for cure of samples. Melt mixing method was applied on silicone rubber and O-MMT using a BRABBENDER mixer with the volume of 60 cc at 60 rpm and temperature of 60°C for 20 minutes. Dicumyl peroxide (0.6% w/w) as crosslinking agent was added to the compound during the mixing on the two roll mill apparatus (Farrel Bridge LTD, UK) at 60°C [20]. Finally samples were vulcanized at 160°C by compression moulding at the optimum cure time (t95). Curing characteristics was determined in a Monsanto R100S oscillating disc rheometer (ODR) at 3 degrees arc at 160°C.

B. Evaluation of Mechanical Properties

The mechanical properties including tensile strength, elastic modulus at tension, and elongation at break were determined using a tensile testing device (Cardano al Campo (VA), Italy). Samples were prepared and tests were performed according to standard protocol of ASTM D412 [21].

C. Cell Culture and Imaging

Human Umbilical Vein Endothelial Cells (HUVECs) were cultured in DMEM + Ham’s F12 (Gibco, USA) containing...
10% FBS (Seromed, Germany) and incubated in 5% CO₂ at 37°C. Silicone nanocomposite substrates were coated by collage type I (Sigma, USA) of 0.5 mg/mL for proper cell attachment. The confluent cells were transferred to the coated substrate and incubated overnight, after then images of cells were captured and processed.

D. Image Processing

The images captured after 24 hours were analyzed using MATLAB-based image analysis code (TheMathWorks, Inc., USA) to approximate adherent cells [22]. To evaluate cell growth the area covered by cells in each image was obtained and the ratio of cell area to the total area was measured through producing binary images and segregation of cells from the background. Then cell density was measured by calculation of number of adherent cells through cell coverage and compared to the number of cells of images of initial culture. Image processing started with conversion of RGB image to the gray scale format. Then an appropriate filter was applied to the resultant image to remove inherent artifacts. After that the binary image was produced, followed by calculation of cell cover parameter. This parameter was computed by the area of adhered cells to the substrate divided by the surface area of the substrate in the image. Variation of cell cover parameter is an indicator of cell growth.

E. Cytotoxicity Assays

In order to evaluate biocompatibility and cytotoxicity, MTT assay was performed as follow. First, 10×10³ human umbilical vein endothelial cells (HUVECs) were added to a 96-well plate and were incubated at 37 °C in humidified atmosphere containing 5% CO₂. After cell adhesion, the extract of each nanocomposite was directly poured onto the cell monolayer. The plate was then incubated for 24 hours. Subsequently, culture medium of each well was replaced with 100 µL of 3-[4,5-dimethyltriazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) with concentration of 0.5 mg/ml and the plates incubated at 37 °C for 4 hours. Then, the MTT solution was removed and plate which contained isopropanol was shaken. Cell viability was finally analyzed at 570 nm in an ELISA reader [23]. Wells containing a high number of cells showed higher O.D. value compared to the wells with fewer cells.

III. RESULTS

A. Mechanical Properties

Table I summarizes mechanical properties evaluated for nanobiocomposites. Results indicated stiffening of the matrix as the content of nanoparticles is elevated. An increase of 18% was observed in tensile modulus when the mass ratio of nanoparticles was elevated from 0% to 3%. Simultaneously the tensile strength of the substrate was increased 23% by adding nanofillers up to 3%. By the same trend, the elongation at break was reduced 19%.

B. Biocompatibility and Toxicity of Substrates

MTT results are shown in Fig. 1 indicating high degree of biocompatibility. Percentage of cell viability for samples has been estimated to be 90-100% in comparison with neat PDMS. In other words, all evaluated samples were found to be nontoxic and biocompatible and cell culture on the O-MMT/silicone rubber nanocomposites showed desirable results.

C. Cell Growth and Proliferation

Figure 2 describes typical images of morphology of HUVECs cultured on samples with different mass ration of nanofillers. Cells in all images are well spread and have grown properly. Fig. 4 represents the relative cell density for different groups through measurement of cell cover parameter. Cell density is calculated by normalizing of adhering cells on each sample in respect to the initial cells (2×10³) transferred to the collage-coated surface (36 mm²) and then dividing dimensionless numbers into the mentioned surface area. Results indicated increase of cell density by elevation of mass ratio of nanofillers, comparable to the increased cell proliferation.

Fig. 1 Cell toxicity results for different samples

Fig. 2 Comparison of cell morphology on the nanocomposites and control samples; (a) PDMS, (b) PDMS-1% O-MMT, (c) PDMS-2% O-MMT, and (d) PDMS-3% O-MMT, (400x).
rubber is hydrophobic due to the presence of methyl groups, hence PDMS is considered as a low surface energy polymer [27]. Increasing O-MMT leads to the rise of the free surface energy by the mechanism of enhancing surface roughness [28]. Previous studies have shown that silicone rubber polymer reinforced by O-MMT obtained further roughness originated from filler tactoids and agglomerates in reference polymer matrix [29]. Rapid cell growth and proliferation are obtained on the surfaces with higher energy [30], as described by cell cover in this study. By increased surface energy of the substrate, the level of energy differences between cell membrane and matrix surface is elevated and therefore strong contacts are generated which results in desirable cell proliferation and signaling.

Mechanical properties of substrate influences cell functionality. Cytoskeletal arrangement and orientation is highly dependent to mechanical and structural properties of the matrix such as elastic modulus, Poisson’s ratio and roughness [31, 32]. When interact with substrate, cellular responses including relaxation time and adaptation by alteration in fibrous structure are defined by local matrix deformability [33, 34]. The adjustment of cell cytoskeleton to the mechanical properties of the substrate roots in the polymerization and depolimerization of actin fibers [35] which act via focal adhesion proteins at the interface of cell-substrate [34].

V. CONCLUSION

In this research, O-MMT nanoparticles were loaded into the silicone rubber matrix on the basis of melt mixing procedure. Consequently, substrates with higher strength and stiffness were acquired with no toxicity effect. Additionally, enhanced cell behavior was shown by nanobiocomposites. In tissue engineering, reconstruction of damaged tissues and generation of tissue integrity necessitate cell substrates with appropriate mechanical properties with no toxic effects and appropriate cell growth and alignment. Results provide means for improvement of silicone rubber as the cell substrate.

ACKNOWLEDGMENT

This work has been partially supported by Pasteur Institute of Iran. We are thankful to Dr. M. A. Shokrgozar and Dr. N. Haghighipour from Duke University for providing valuable suggestions.

REFERENCES

Mothare Sadat Hosseini was graduated from Amirkabir University of Technology in September 2009 and July 2011 with two Bachelor’s degrees, one in Biomedical Engineering and another in Polymer Engineering and is now MSc student.

Mohammad Tafazzoli-Shadpour received his B.S. degree in Mechanical Engineering (Solid Mechanic) from Tehran Sharif University of Technology, and his M.S. and Ph.D. degrees in Management Development and Biomedical Engineering from Tehran University and The University of New South Wales, Sydney, Australia, respectively. He was the academic member of the Biomedical Engineering Department of Amirkabir University in 1999. His research interests are in stem cell engineering, cardiovascular engineering and cell mechanics. Emails: tafazol@aut.ac.ir.

Prof. Ali Asghar Katbab received MSc and Ph.D degree in polymer engineering of Birmingham University of England. Academic activities were started in 1981 at polymer engineering department of Amirkabir University in Tehran. My main research activities have been focused on microstructure-properties correlation of polymer nanocomposites and nanomaterials. I am currently full professor at this department and published over 90 international papers.