
Group Key Management Protocols: A Novel
Taxonomy

Yacine Challal, Hamida Seba

Abstract—Group key management is an important func-
tional building block for any secure multicast architecture.
Thereby, it has been extensively studied in the literature.
In this paper we present relevant group key management
protocols. Then, we compare them against some pertinent
performance criteria.

Keywords—Multicast, Security, Group Key Management.

I. Introduction

THE phenomenal growth of the Internet in the last few
years and the increase of bandwidth in today’s net-

works have provided both inspiration and motivation for
the development of new services, combining voice, video
and text ”over IP”. Although unicast communications
have been predominant so far, the demand for multi-
cast communications is increasing both from the Inter-
net Service Providers (ISPs) and from content or media
providers and distributors. Indeed, multicasting is increas-
ingly used as an efficient communication mechanism for
group-oriented applications in the Internet such as video
conferencing, interactive group games, video on demand
(VoD), TV over Internet, e-learning, software updates,
database replication and broadcasting stock quotes. Nev-
ertheless, the lack of security in the multicast communica-
tion model obstructs the effective and large scale deploy-
ment of such strategic business multi-party applications.
This limitation motivated a host of research works that
have addressed the many issues relating to securing the
multicast, such as confidentiality, authentication, water-
marking and access control. These issues must be seen
in the context of the security policies that prevail within
the given circumstances. For instance, in a public stock
quotes broadcasting, while authentication is a fundamental
requirement, confidentiality may not be. In the contrary
case, both authentication and confidentiality are required
in video-conference applications. In this paper, we focus on
a keystone component of any secure multicast architecture
over wired networks: group key management.

II. Group Communication Confidentiality

In this section, we will use a simple scenario to introduce
the challenging issues relating to group confidentiality and
key management. We consider a source that sends data
to a set of receivers in a multicast session. The security
of the session is managed by two main functional entities:
a Group Controller (GC) responsible for authentication,
authorization and access control, and a Key Server (KS)

Yacine Challal, and Hamida Seba are with Compiegne University
of Technology, Heudiasyc lab., France (phone:33-3-44-23-44-23; e-
mail: ychallal@hds.utc.fr, seba@hds.utc.fr).

responsible for the maintenance and distribution of the re-
quired key material. Note that these two functions can
be implemented over a single physical entity or over dif-
ferent physical entities depending on the key management
architecture. Figure 1 depicts this simple scenario.

{m}TEK

{m}TEK

{m
}T

EK

m4m3m2

TEK

KEK4

TEK

KEK1

KEK2

KEK3

TEK

KEK4

TEK

{m
}TEK

TEK

KEK2

TEK

KEK1

GC/KS

Source

Multicast Tree

Group Member

{m
}T

E
K

KEK3

m1

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

����

����

����

��

Fig. 1. Simple scenario of group confidentiality components

To ensure confidentiality during the multicast session,
the sender (source) shares a secret symmetric key with
all valid group members, called Traffic Encryption Key
(TEK). To multicast a secret message, the source encrypts
the message with the TEK using a symmetric encryption
algorithm. Upon receiving the encrypted multicast mes-
sage {m}TEK , each valid member that knows the TEK
can decrypt it with TEK and recover the original one. To
avoid that a leaving or an ejected member from the group,
continues to decrypt the secret multicast messages, the KS
must generate a new TEK and securely distribute it to the
all remaining group members except the leaving one. This
operation is called re-keying. The KS shares a secret key
called Key Encryption Key (KEKi) with each member mi

(cf. figure 1). To re-key the group following a leave from
the group, the KS generates a new TEK: TEK ′, and sends
it to each member mi (except the leaving one) encrypted
with its corresponding KEKi. Thereby, the leaving mem-
ber cannot know the new TEK ′ and hence will not be able
to decrypt future multicast messages of this session.

When a new member joins the session, it must be au-
thenticated by the GC. After checking the rights of the
new member to access the group, the KS proceeds to a
new group re-keying to avoid that the new member de-
crypts previous exchanged messages using the current key.
Therefore, the KS generates a new TEK: TEK ′, encrypts
it with the old TEK: {TEK ′}TEK , and multicasts it to

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3620International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

the group. Hence all old members can recover the new
TEK: TEK ′. Then, the KS encrypts TEK ′ with the se-
cret KEKj that it shares with the new member mj and
sends it to him to recover TEK ′ which is required to de-
crypt the multicast messages.

The maintenance and the distribution of the keys in-
volved in re-keying and encryption is commonly called :
Group Key Management. In this illustrative protocol, re-
keying induces a O(n) re-key messages after each leave
from the group, where n is the number of group mem-
bers. It induces also a storage of O(n) keys (1 TEK + n
KEKi) at the KS during the whole secure multicast ses-
sion. Since each membership change in the group requires
re-keying and the group may be highly dynamic, one of
the challenges of group key management is how to assure
re-keying using the minimum bandwidth overhead without
increasing the storage overhead. Proposed solutions in the
literature, as we will see in the following sections, trade
bandwidth overhead for storage overhead to achieve the
best overall performance.

III. Group Key Management Requirements

Efficient group key management protocols should take
into consideration miscellaneous requirements. Figure 2
summarizes these requirements from four points of view:
security, quality of service, KS’s resources, and group mem-
bers’ resources.

Security Requirements QoS Requirements
 Requirements
Key Server

 Requirements
Group Members

Group Key Management

Requirements

1) Forward Secrecy

2) Backward Secrecy

3) Collusion Freedom

4) Key Independence

5) Minimal Trust

1) Low Bandwidth

2) No 1−affects−n

3) Minimal delays

4) Service Availability

1) Low Storage

2) Low Computation

1) Low Storage

2) Low Computation

5) Minimal Trust

Fig. 2. Group Key Management Requirements

Security requirements:
1. Forward secrecy requires that users who left the group

should not have access to any future key. This ensures
that a member cannot decrypt data after it leaves the
group. To assure forward secrecy, a re-key of the group
with a new TEK after each leave from the group is the
ultimate solution.

2. Backward secrecy requires that a new user that joins
the session should not have access to any old key. This
ensures that a member cannot decrypt data sent be-
fore it joins the group. To assure backward secrecy, a
re-key of the group with a new TEK after each join to
the group is the ultimate solution.

3. Collusion freedom requires that any set of fraudulent
users should not be able to deduce the current traffic
encryption key.

4. Key independence: a protocol is said key independent
if a disclosure of a key does not compromise other
keys.

5. Minimal trust : the key management scheme should
not place trust in a high number of entities. Other-
wise, the effective deployment of the scheme would not
be easy.

Quality of service requirement:
1. Low bandwidth overhead : the re-key of the group

should not induce a high number of messages, espe-
cially for dynamic groups. Ideally, this should be in-
dependent from the group size.

2. 1-affects-n: a protocol suffers from the 1-affects-n
phenomenon if a single membership change in the
group affects all the other group members. This hap-
pens typically when a single membership change re-
quires that all group members commit to a new TEK.

3. Minimal delays: many applications that are built
over the multicast service (typically, multimedia appli-
cations) are sensitive to jitters and delays in packet de-
livery. Therefore, any key management scheme should
take this into consideration and hence minimizes the
impact of key management on the delays of packet de-
livery.

4. Service availability: the failure of a single entity in
the key management architecture must not prevent
the operation of the whole multicast session.

Other requirements:
1. The key management scheme must not induce neither

high storage of keys nor high computation overhead at
the key server or group members.

IV. A Taxonomy of Group Key Management

A critical problem with any re-key technique is scalabil-
ity: as a re-keying process should be triggered after each
membership change, the number of TEK update messages
may be important in case of frequent join and leave op-
erations. Thereby, some solutions propose to organize the
secure group into subgroups with independent local TEKs.
This reduces the impact of re-keying, but requires data
transformation at the borders of subgroups as we will see
in the following sections. Therefore, we can classify ex-
isting solutions into two approaches: the Common TEK
approach and the TEK per sub-group approach as illus-
trated in figure 3. In what follows, we present each class of
protocols and we further refine the classification in order
to highlight the underlying common concepts and mecha-
nisms. We will illustrate each identified sub-category with
relevant protocols from the literature.

V. Common TEK Approach

In this approach, all group members share a common
Traffic Encryption Key (TEK). The management of this
single key can be further classified into three classes: cen-
tralized, decentralized or distributed. Figure 3 illustrates
this classification.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3621International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

Cooperation
Broadcast

Cooperation
Hierarchical

Secrets
Broadcast

Cooperation

Centralized Decentralized

Cooperation
Broadcast

Cooperation
HierarchicalKeys Hierarchy

Secrets
Broadcast

Cooperation

Centralized Decentralized

Pairwise keys

GKMP Secure Lock LKH
OFT
Canetti et al.
ELK
CFKM

Keystone
Wong et al.

Poovendran et al.
Dunigan and Cao

SMKD
IGKMP

Ingemarson et al.
GDH

Octopus
STR
DH−LKH
D−LKH
D−OFT
D−CFKM

Fiat et al.
Burmester et al.
CKA

Ring−based

Key agreement
Distributed

MARKS
Kronos
DEPHydra

Baal

driven re−keying
Time−

driven re−keying
Membership−

Chu et al.

Group Key Management

A
rc

hi
te

ct
ur

e
C

om
m

on
 T

E
K

Cipher Sequences
KHIP
Iolus Yang et al.

In
de

pe
nd

en
t

T
E

K
pe

r
su

bg
ro

up

SIM−KM

SAKM

Fig. 3. Taxonomy of Common TEK Group Key Management Protocols

A. Centralized Protocols

In this approach, the key distribution function is assured
by a single entity which is responsible for generating and
distributing the traffic encryption key (TEK) whenever re-
quired. In figure 3, centralized protocols are further classi-
fied into three sub-categories depending on the technique
used to distribute the TEKs. In what follows, we present
each sub-category:

A.1 Pairwise Keys

In this sub-category of protocols, the Key Server shares
a secret key with each group member. These keys are gen-
erally called: Key Encryption Keys (KEK) and are used to
establish secure channels between the KS and each member
in order to re-distribute the current TEK securely when-
ever required.

Group Key Management Protocol (GKMP):
Harney and Muckenhirn [25, 26] proposed the Group Key
Management Protocol (GKMP) that uses this approach.
The key server shares a secret key with each valid group
member (KEKs). In GKMP, the key server generates a
Group Key Packet (GKP) that contains two keys: a Group
TEK (GTEK) and a Group KEK (GKEK). The GTEK is
used to encrypt the traffic and the GKEK is used to secure
the distribution of a new GKP whenever required. When
a new member joins the session, the key server generates
a new GKP (which contains a new GTEK to assure back-
ward secrecy) and sends it securely to the new member en-
crypted with the KEK established with this new member,
and sends it to the other members encrypted with the old
GTEK. The key server refreshes the GKP periodically and
uses the GKEK for its distribution to the group members.
When a member leaves the group, the key server gener-
ates a new GKP and sends it to each remaining member
encrypted with the KEK that it shares with each mem-
ber. Thus to assure forward secrecy, GKMP requires O(n)
re-key messages for each leave from the group. Therefore,
this solution does not scale to large groups with highly
dynamic members.

Dunigan and Cao [21] proposed a similar protocol that
suffers from the same issues. Poovendram et al. [38] have
also proposed a similar scheme to GKMP, where authenti-
cation and authorization functions are delegated to other
group members rather than centralized at the same group
controller entity.

Hao-hua Chu et al. protocol: In the solution pro-
posed by Hao-hua Chu et al. in [14], a Group Leader shares
a secret Key Encryption Key (KEK) with each group mem-
ber. To send a secret multicast message m, the sender en-
crypts m with a random key k. Then, the sender encrypts
k with the secret KEK that it shares with the group leader,
and sends it to the group along with the encrypted mes-
sage. Upon receiving the message, receivers cannot decrypt
it since they do not know the random key k. When the
leader receives the message, it decrypts k using the key
that it shares with the source and constructs a validation
message which contains k encrypted with each KEK that
the leader shares with a valid group member (excluding the
departing members). Upon receiving the validation mes-
sage, each receiver decrypts k using its KEK and hence
decrypts m which was encrypted using k. This protocol
has the drawback to require the transmission of the vali-
dation multicast message by the group leader, with a size
in the order of O(n) (n being the number of current valid
group members), after each time the source sends a mes-
sage to the group.

A.2 Broadcast Secrets Approach

In this sub-category of protocols, the re-keying of the
group is based on broadcast messages instead of peer to
peer secret transmissions.

Secure Locks: Chiou and Chen [13] proposed Secure
Lock; a key management protocol where the key server
requires only a single broadcast to establish the group key
or to re-key the entire group in case of a leave. The protocol
relies on the following theorem:

Theorem 1: Chinese Remainder Theorem Let
m1, . . . , mn be pairwise relatively prime positive inte-

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3622International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

gers, and let a1, . . . , an be any integers. Then the system
of linear congruences in one variable given by:

x ≡ a1 mod m1

. . .

x ≡ an mod mn

has a unique solution modulo M = m1 ×m2 × . . .mn.
The unique solution is: x =

∑n
i=1 aiMiyi mod M , where

Mi = M/mi and yi = M−1
i mod mi.

In this protocol, the key server assigns a positive integer
mi to each member and shares a secret value ki with each
of them. When the server wants to send a message to the
group, it generates a random value K and uses it to encrypt
the message. Then, it encrypts K with each secret ki and
obtains the set {Ki} of the encryptions of K (Ki = {K}ki

).
Then the server computes a lock M which is the solution
to the equation system:

M ≡ K1 mod m1

. . .

M ≡ Kn mod mn

Then the server multicasts the lock M as well as the
encrypted message with K. Upon reception of the
lock M , each member recovers the encryption key K =
{M mod mi}ki

, and hence decrypts the received message.
Only members whose secret ki and its corresponding posi-
tive integer mi are included in the computation of the lock
M , can recover the decryption key K.

This protocol minimizes the number of re-key messages.
However, it increases the computation at the server due to
the Chinese Remainder calculations before sending each
message to the group.

A.3 Hierarchy of Keys Approach

We showed that in the pairwise keys approach, re-keying
induces a high number of update messages (in the order of
O(n), with n being the number of group members). This
is due mainly to the fact that the key server establishes
a secure channel individually with each member and uses
this channel to distribute the TEK updates. In order to re-
duce the number of update messages, in this sub-category
of protocols, the key server shares secret keys with sub-
groups of the entire secure group in addition to the indi-
vidual channels. Then, when a member leaves the secure
session, the key server uses the secret sub-group keys, that
are unknown by the leaving member, to distribute the new
TEK. Thereby, sub-group secret keys allow to reduce the
required number of update messages. In what follows we
present some protocols that use this concept for re-keying:

Local Key Hierarchy (LKH): Independently, Wong
et al. [49, 50] and Wallner et al. [48] proposed the Logical
Key Hierarchy (LKH) protocol. In LKH, the key server
maintains a tree of keys. The nodes of the tree correspond
to KEKs and the leaves of the tree correspond to secret
keys shared with the members of the group. Each member

holds a copy of its leaf secret key and all the KEKs corre-
sponding to the nodes in the path from its leaf to the root.
The key corresponding to the root of the tree is the TEK.
For a balanced binary tree, each member stores at most
1+ log2(n) keys, where n is the number of group members.

This key hierarchy allows to reduce the number of re-key
messages to O(logn) instead of O(n) in GKMP.

Example: Let us consider a multicast group with six
members {u1, u2, u3, u4, u5, u6}. The key server builds a
hierarchy of keys as shown in figure 4. Each member owns
a secret key which is a leaf in the tree as well as all the
keys on its path to the root. The root represents the TEK
shared by the members. The other keys are used to reduce
the required re-keying messages. According to figure 4 :
u1 owns{ k1, k12, k1234, TEK}, u2 owns{ k2, k12, k1234,
TEK}, u3 owns{ k3, k34, k1234, TEK}, u4 owns{ k4, k34,
k1234, TEK}, u5 owns{ k5, k56, TEK} and u6 owns{ k6,
k56, TEK}.

K34

U1 U2 U3 U4 U5 U6

U2 U3 U4U1{ }

6U{ }

U6{ }K K K K

K

3 4 5 6

56

K1234

TEK
{TEK’}K’56

{K’ }56 K6

{TEK’}K1234

K1 K2

K12

Fig. 4. key Hierarchy

Let us assume that u5 leaves the group, KS updates k56

into k′

56, sends k′

56 to u6 encrypted with k6. TEK is up-
dated into TEK’ and sent to {u1,u2,u3,u4} encrypted with
k1234 and to u6 encrypted with k′

56 and hence only three
messages are required instead of five messages if GKMP
were used.

Wong et al. [49,50] proposed the extension of the binary
key tree to a k-ary key tree. Using a greater degree reduces
the number of keys maintained by the members because of
a smaller tree depth. Performance analysis shows that op-
timal results are reached with trees having a degree less
or equal to 4. The authors propose also the Keystone ar-
chitecture [51], where the key server is aided by secondary
controllers called registrars, whose role is limited to regis-
tration and authentication of new members.

One-way Function Trees (OFT): McGrew and
Sherman [2,30] proposed an improvement over LKH called
One-way Function Trees (OFT). OFT allows to reduce the
number of re-key messages from 2log2 (n) to only log2 (n).
With OFT, a KEK is calculated by members rather than
attributed by the key server. Indeed, each KEK ki is com-
puted using its child KEKs using the formula:

ki = f(g(kleft(i)), g(kright(i))) (1)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3623International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

where left(i) and right(i) denote respectively the left and
right children of node i, and g is a one-way function. The
result of applying g to a key k: g(k), is called the blinded
key version of k.

In this protocol, each member maintains its leaf secret
key and its blinded sibling key and the set of blinded sibling
KEKs of its ancestors. Figure 5 illustrates the ancestors
and their corresponding sibling keys of member u2.

���
���
���

���
���
���

���
���
���

���
���
���

������

K4

TEK

K12 K34

K1 K2 K3

U1 U2 U3 U4

Sibling key

Ancestor key

Fig. 5. Ancestor and Sibling keys of member U2.

Using formula 1, each member can calculate all the re-
quired ancestor KEKs (KEKs on the nodes in the path
from the leaf secret to the root) recursively. In the original
scheme (LKH), when a new KEK is generated, it is en-
crypted with its two child KEKs. However, in OFT when
a blinded key is changed in a node it has to be encrypted
only with the key of its sibling node. Hence, the required
number of re-key messages is reduced by half.

Example: Let us consider the hierarchy of keys in figure
6.

K’18

K’

K14 K’58

K56 K’78

K7 K8

{g(K’58)}K14

{g(K’18)}K9−16

{g(K’78)}K56

{g(K7)}K8

U7 U8

K9−16

Fig. 6. Example of a OFT scenario. U7 joins the session.

When user U7 joins the group, the keys K78, K58, K18

and the group key K, should be modified into K ′

78, K ′

58,
K ′

18 and K ′, respectively. In order to redistribute the
new group key and the modified KEK s, the only val-
ues that should be sent, are the blinded keys: g(K7),
g(K ′

78), g(K ′

58), and g(K ′

18), respectively encrypted with:
K8, K56, K14, and K9−16. The new TEK and KEK s
can be now calculated as follows: K ′

78 = f(g(K7), g(K8)),
K ′

58 = f(g(K56), g(K ′

78)), K ′

18 = f(g(K14), g(K ′

58)), and
K ′ = f(g(K ′

18),g(K9−16)). In this example, user U8 main-

tains K8, g(K56), g(K14), and g(K9−16). When it receives
{g(K7)}K8 , it calculates recursively all the keys on its path
to the root of the hierarchy, using the above formulas.
These calculations culminate into the new group key K ′.

Canetti et al. [10] proposed a similar approach that has
the same communication overhead. The proposed scheme
called: one-way function chain tree, uses a pseudo-random-
generator to generate the new KEKs rather than a one-
way function. Perrig et al. proposed yet another simi-
lar protocol called: Efficient Large group Key distribution
(ELK) [37], that uses Pseudo Random Functions to gener-
ate the new KEKs.

Centralized Flat table Key Management
(CFKM): Waldvogel et al. [47] proposed the Centralized
Flat Table Key Management protocol (CFKM). In this
approach, the key hierarchy is replaced by a flat table in
order to reduce the number of keys maintained by the Key
Server. The table contains a single entry for the TEK and
2w entries for the KEKs, where w is the number of bits
in a member identifier (the authors propose to use IP ad-
dresses as member identifiers). Two keys are associated to
the two possible values of each bit in a member id. Figure
7 illustrates the structure of the table for w = 4.

TEK

KEK10

KEK20

KEK30

KEK00

KEK31

KEK21

KEK11

KEK01

Fig. 7. CFKM table with w = 4

Each member holds the KEKs associated to the val-
ues of its identifier bits. Thus, each member holds w + 1
keys (w KEKs in addition to TEK). For instance, a mem-
ber with the identifier 0101 maintains KEK00, KEK11,
KEK20, KEK31 and the TEK. When a member leaves the
group, all the keys held by this departing member should
be modified to assure forward secrecy. Therefore the key
server sends a re-key message containing two parts: a first
part contains the TEK encrypted with each not compro-
mised KEK from the flat table, and hence all the remaining
members would be able to decrypt the new TEK. The sec-
ond part contains the new KEKs encrypted with both the
old KEK and the new TEK. This way, the leaving member
cannot recover the new TEK and the remaining members
can update their old KEKs without having access to the
KEKs of other members. Figure 8 illustrates the re-key
message sent by the key server after the leave of the mem-
ber with the identifier 0101.

A.4 Comparison

In table I we compare the above protocols against the
following relevant criteria:

1. 1-affects-n
2. Storage at the key server : the number of keys that

should be maintained by a key server.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3624International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

TEK

{{KEK00new}KEK00old}TEKnew {TEKnew}KEK01

{TEKnew}KEK10

{TEKnew}KEK21

{TEKnew}KEK30

{{KEK11new}KEK11old}TEKnew

{{KEK20new}KEK20old}TEKnew

{{KEK31new}KEK31old}TEKnewid bit # 3

id bit # 2

id bit # 1

id bit # 0

bit 0 bit 1

Fig. 8. CFKM re-key message when member 0101 leaves the group

3. Storage at a member : the number of keys that should
be maintained by a group member.

4. Join re-key overhead : number of re-key messages sent
by the key server to redistribute the group TEK after
a join.

5. Leave re-key overhead : number of re-key messages
sent by the key server to redistribute the group TEK
after a leave.

The GKMP protocol achieves an excellent result for stor-
age at the members. However, this result is achieved by
providing no method for re-keying the group after a mem-
ber has left, except re-creating the entire group which in-
duces a O(n) re-key messages overhead, with n being the
number of the remaining group members. Secure Lock
achieves also excellent results for storage and communi-
cation overheads on both members and the key server.
However, these results are achieved by increasing the com-
putation overhead at the key server due to the Chinese
Remainder calculations. So far, the best solutions for cen-
tralized group key management appear to be those using
a hierarchical tree of KEKs. They achieve good overall
results without compromising any aspects of security.

B. Decentralized Architectures

In this approach, a hierarchy of key managers share the
labor of distributing the TEK to group members in order
to avoid bottlenecks and single point of failure. We distin-
guish two sub-categories corresponding to the case where
the TEK is modified after each membership change (mem-
bership driven), or systematically after each slot of time
(time driven) (cf. figure 3).

B.1 Membership-Driven Re-keying

In this sub-category of protocols, the TEK is changed
each time a join or a leave occurs in the membership of the
group. In what follows we present some protocols relying
on this approach.

Scalable Multicast Key Distribution (SMKD):
Ballardie proposed in RFC1949 [3] the Scalable Multicast
Key Distribution (SMKD); a protocol that exploits the tree
built by the Core Based Tree multicast routing protocol
(CBT) [4, 5] to deliver keys to multicast group members.
In a CBT architecture, the multicast tree is rooted at a
main core. Secondary cores can exist eventually. The main
core creates an access control list (ACL), a session key
GTEK and key encryption key GKEK used to update the
session key GTEK. The ACL, the GTEK and the GKEK
are transmitted to secondary cores and other nodes when

they join the multicast tree after their authentication. Any
router or secondary core authenticated with the primary
core can authenticate joining members and use the ACL to
distribute the keys, but only the main core generates those
keys. With SMKD there is no solution for forward secrecy
other than to recreate an entirely new group without the
leaving members.

Intra-domain Group Key Management Proto-
col (IGKMP): DeCleene et al. [15, 24] proposed the
Intra-domain Group Key Management Protocol IGKMP.
This architecture divides the network into administratively
scoped areas. There is a Domain Key Distributor (DKD)
and many Area Key Distributors (AKD). Each AKD is re-
sponsible for one area. Figure 9 illustrates an example of
this architecture.

DKDTEK

all−KD−group

AKD1

m mmmmmmm m

local area group local area group local area group

AKD2 AKD3TEK TEKTEK

Fig. 9. An example of an Inter-domain Group Key Management
(IGKMP) Architecture

The group TEK is generated by the DKD and is prop-
agated to the group members through the AKDs. The
DKD and AKDs belong to a multicast group called All-
KD-Group. The DKD uses this group to transmit re-key
messages to the AKDs who re-key in turn their respec-
tive areas. This architecture suffers from a single point of
failure which is the DKD; the sole entity responsible for
generating the group TEK. Besides, in case of an AKD
failure, members belonging to the same area will be not
able to access the group communication.

Hydra: Rafeli and Hutchison [39] proposed Hydra pro-
tocol, in which the group is organized into smaller sub-
groups, and a server called the Hydra server (HSi) controls
each sub-group i. If a membership change occurs at sub-
group i, the corresponding HSi generates the group TEK
and sends it to the other HSjs involved in that session. In
order to have the same group TEK distributed to all HSs
a special protocol is used to ensure that only a single valid
HS is generating the new TEK whenever required.

Baal Chaddoud et al. [11] proposed a similar protocol
called Baal which defines three entities:

1. The group controller (GC): maintains a participant
list (PL) and creates and distributes the group key
(TEK) to group members via local controllers.

2. Local controllers (CL): the GC delegates a LC to each
subnet (generally a local network) to manage the keys
within its subnet. When a LC receives a new TEK it
distributes it to the members connected to its subnet.
Besides, a LC can play the role of the GC by gen-
erating and distributing new TEKs after membership

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3625International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

TABLE I

Comparison of centralized group key management

Protocol 1-affects-n Re-key Overhead Storage Overhead
Join Leave Key Server Member

Multicast Unicast

GKMP Yes 2 2 2n n + 2 3
LKH Yes log2 (n)− 1 log2 (n) + 1 2log2 (n) 2n− 1 log2 (n) + 1
OFT Yes log2 (n) + 1 log2 (n) + 1 log2 (n) + 1 2n− 1 log2 (n) + 1

CFKM Yes 2I I + 1 2I 2I + 1 I + 1
Secure Lock No 0 2 0 2n 2

n: number of group members, I: number of bits in a member id.

changes following some coordination rules.
3. Group member : a member in the PL.

When a membership change occurs at a subnet, the cor-
responding LC can generate a new TEK and distribute it
to its subnet and to the other members via their LCs. To
assure that a single LC generates a new TEK at a time, the
GC assigns a priority to each LC and when many LCs dis-
tribute simultaneously a new TEK, the LCs are instructed
to commit to the TEK issued by the LC having the highest
priority.

R. Oppliger and A. Albanese [35] proposed a similar
decentralized solution called Distributed Registration and
Key distribution (DiRK). In their architecture, the au-
thors distinguish between active and passive group mem-
bers. Active members have the ability to register other new
members, and to generate and distribute TEK s whenever
required. DiRK relies on a PKI to authenticate active
members, and the origin of received TEK s.

B.2 Time-Driven Re-keying

In this sub-category of protocols, the TEK is changed
after each specific period of time. Thereby, the depart-
ing members are not excluded immediately from having
access to the secure content. Similarly, new members are
appointed to wait for the beginning of a new interval of
time before having access to the content. In what follows
we present some protocols relying on this concept.

Kronos: Setia et al. [42] proposed the Kronos protocol.
This protocol is driven by periodic re-keying rather than
membership changes, which means that a new group TEK
is generated after each period of time rather than after
each membership change. Similarly to IGKMP, in Kro-
nos a domain is divided into areas managed by different
AKDs. However, in Kronos the DKD does not multicast
the group TEK each time to the AKDs. Instead of that,
each AKD generates independently the same group TEK
whenever required and re-keys the members belonging to
its area. To implement this scheme, the AKDs’ clocks
should be synchronized, and the AKDs have to agree on a
re-key period. Second, the DKD transmits secret factors
K and R0 to AKDs using secure channels. To generate
the group TEK Ri+1, AKDs calculate after each period
of time: Ri+1 = EK(Ri), which is the encryption of the
previous TEK (Ri) with the encryption algorithm E using
the secret key K.

MARKS: In MARKS, Briscoe [8] suggests slicing the
time length to be protected (such as the transmission time

of a TV show) into small portions of time and using a
different key for encrypting each slice. The encryption keys
are leaves in a binary hash tree that is generated from a
single seed. A blinding function, such as MD5 [40] is used
to create the tree nodes. Figure 10 shows an example of
the generated binary tree whose leaves are the keys that
correspond to the different slices.

S00

S10 S11

S20 S21 S22 S23

TEK3TEK2TEK1TEK0

T2 T3

RS: Right Shift operation
LS: Left Shift operation

T0 T1 Time

M
D

5(RS(S00))

M
D

5(
L

S(
S1

1)
)

M
D

5(
LS

(S
10

))

M
D

5(
LS

(S
00

))

M
D

5(R
S(S11))

M
D

5(R
S(S10))

Fig. 10. An example of a MARKS key generation tree

Each intermediate node (including the root) allows to
generate two children (left and right children). The left
node is generated by shifting its parent one bit to the left
and applying the blinding function on it. The right node
is generated by shifting its parent one bit to the right and
applying the blinding function on it (cf. figure 10). Users
willing to access the group communication receive the seeds
needed to generate the required keys. The system cannot
be used in situations where a membership change requires
the change of the group key, since the keys are changed as
a function of the time. The distribution of the seeds and
the management of receivers’ queries are assured by a set
of key managers.

Dual Encryption Protocol (DEP): A common
drawback of most of decentralized protocols is the involve-
ment of a high number of intermediary parties. In prac-
tice it is difficult to assume trustiness for all of these en-
tities. In order to solve the problem of trusting third par-
ties, Dondeti et al. [18–20] proposed the Dual Encryption
Protocol (DEP). In their work, they suggest hierarchical
sub-grouping of the group members where a sub-group
manager (SGM) controls each sub-group. There define
three types of KEKs and one Data Encryption Key (DEK):
KEKi1 is shared between a SGMi and its sub-group mem-

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3626International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

bers. KEKi2 is shared between the Key Server (KS) and
the group members of sub-group i excluding SGMi. Fi-
nally, KS shares KEKi3 with SGMi. In order to dis-
tribute the DEK to the group members, the KS generates
and transmits a package containing the DEK encrypted
with KEKi2 and encrypted again with KEKi3. Upon
receiving the package, SGMi decrypts its part of the mes-
sage using KEKi3 and recovers the DEK encrypted with
its sub-group KEK (KEKi2), which is not known by the
SGMi. SGMi encrypts this encrypted DEK using KEKi1

shared with its sub-group members and sends it out to
sub-group i. Each member of sub-group i decrypts the
message using KEKi1 and then, decrypting the message
using KEKi2 (shared with KS), recovers DEK. Therefore,
the DEK cannot be recovered by any entity that does not
know both keys. Hence, although there are third parties
involved in the management (SGMs), they do not have
access to the group key (DEK). When the membership of
sub-group i changes, the SGMi changes KEKi1 and sends
it to its members. Future DEK changes cannot be accessed
for members of sub-group i that did not received the new
KEKi1.

B.3 Comparison

In table II, we compare some of the above protocols
against the following criteria:

1. Key independence
2. 1-affects-n
3. Local re-keying : membership changes in a sub-group

should be treated locally.
4. Data transformation: data is transformed using some

means when messages pass from a sub-group to an-
other.

Kronos does not provide key independence because it
generates new keys based on old ones, and if any past key
is compromised , all future keys are disclosed. The same
happens with MARKS if a seed is compromised.

We note that even though these protocols divide the
whole group into sub-groups they still suffer from 1-affects-
n phenomenon because of using the same TEK for all sub-
groups.

C. Distributed Key-Agreement Protocols

With distributed key-agreement protocols, the group
members cooperate to establish a group key. This improves
the reliability of the overall system and reduces the bot-
tlenecks in the network in comparison to the centralized
approach. In figure 3, we further classify the protocols of
this category into three sub-categories depending on the
virtual topology created by the members for cooperation.

C.1 Ring-Based Cooperation

In this sub-category, the cooperation of group members
forms a virtual ring, as we will see in the following proto-
cols.

Ingemarson et al. protocol: The protocol pro-
posed by Ingemarson et al. in [27] is one of the earli-
est propositions to extend Diffie-Hellman key agreement

protocol [16] to group communication. In this protocol,
members are organized into a virtual ring; in a way that
member Mi communicates with member Mi+1 and mem-
ber Mn with member M1. The group members compute
the group key within (n− 1) rounds. Initially, each mem-
ber Mi generates a random value Ni, computes gNi and
sends it to the next member Mi+1. Then, in each round,
each member Mi raises to the power Ni the intermediate
value received from member Mi−1, and sends the result to
the member Mi+1. Each member performs n exponentia-
tions and gets the group key Kn = gN1N2...Nn after (n−1)
rounds. This protocol is not suitable for dynamic groups
because it requires the execution of the entire algorithm
after each membership change.

Group Diffie-Hellman (GDH): Steiner et al. [46]
proposed this group key exchange protocol as an exten-
sion of the Diffie-Hellman protocol [16] to establish group
keys. The group agrees on a pair of primes (q and α) and
starts calculating in a distributed way the intermediate
values. The first member calculates the first value (αx1 ,
with x1 a random secret generated by the first member)
and sends it to the next member. Each subsequent mem-
ber receiving the set of intermediary values, raises them
using its own secret number generating a new set: a set
generated by the ith member will have i intermediate val-
ues with i− 1 exponents and a cardinal value containing
all exponents. For example; the fourth member receives
the set: {αx2x3 , αx1x3 , αx1x2 , αx1x2x3} and generates the
set {αx2x3x4 , αx1x3x4 , αx1x2x4 , αx1x2x3 , αx1x2x3x4}. The
cardinal value in this example is αx1x2x3x4 . The last mem-
ber can easily calculate the group key k from the cardinal
value: k = αx1x2x3...xn mod q. The last member raises all
intermediate values to its secret value and multicasts the
whole set to all group members. Upon receiving this mes-
sage, each member j extracts its respective intermediate
value and calculates k by exponentiation of the jth value
to xj . The setup time and the length of messages are lin-
ear in terms of the number of group members n since all
members must contribute to generating the group key.

C.2 Hierarchy-Based Cooperation

Octopus: Becket and Wille [6] proposed the Octopus
protocol. This protocol is also based on Diffie-Hellman
key exchange protocol [16]. In Octopus, the large group
(composed of n members) is split into four sub-groups (n

4
members each). Each sub-group agrees internally on an
intermediate DH value: Isubgroup = αu1u2...un/4, where ui

is the contribution from user i, and then the subgroups ex-
change their intermediary values. All group members can
then calculate the group key. The leader member in each
sub-group is responsible for collecting contributions from
its sub-group members and calculating the intermediary
DH value (Isubgroup). Let us call the subgroup leaders A,
B, C and D. First, A and B, using DH, exchange their in-
termediary values Ia and Ib, creating αIa.Ib . Also, C and
D do the same and create αIc.Ib . Then, A and C exchange
αIa.Ib and αIc.Id . Leaders, B and D do the same. Now,
all of them can calculate αIa.Ib.Ic.Id . After that, A, B, C

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3627International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

TABLE II

Comparison of some decentralized group key management protocols

Protocol Key independence 1-affects-n Local re-key Data transformation

SMKD Yes Yes No No
IGKMP Yes Yes No No

DEP Yes Yes No No
Kronos No - No No
Hydra Yes Yes No No

MARKS No - No No

and D send to their respective subgroups α
Ia.Ib.Ic.Id

ui , where
i = 1 . . .(n−4)/4, and all members of the group are capable
of calculating the group key.

Skinny TRee (STR): The Skinny TRee (STR) proto-
col, proposed by Steer et al. [45] and undertaken by Kim
et al. [29], is a contributive protocol using a tree structure.
Figure 11 illustrates an STR tree with four members.

LN1 LN2

LN3

LN4

IN2

IN3

IN4

r1, br1 r2, br2

r3, br3

r4, br4

k2, bk2

k3, bk3

k4, bk4

M1 M2

M3

M4

Fig. 11. An example of a STR tree

The leaves are associated to group members. Each leaf is
identified by its position LNi in the tree and holds a secret
random ri (generated by the corresponding member Mi)
and its public blinded version bri = gri mod p, where g and
p are DH parameters. Each internal node is identified by its
position INi in the tree and holds a secret random ki and
its blinded public version bki = gki mod p. Each secret ki

is recursively calculated as follows: ki = (bki−1)ri mod p=
(bri)ki−1 mod p. The group key is the key associated to
the root: kn = grngrn−1...gr2r1

. Due to the linear structure
of the tree, this solution induces a O(n) key calculations in
order to establish the group key associated to the root of
the tree. Besides, each member should store and maintain
all the public keys associated to all the nodes of the tree.
In case of a membership change (join / leave) the tree is
re-built consequently and hence all the members update
the group key which is the new key kn associated to the
root of the tree.

Diffie Hellman - Logical Key Hierarchy (DH-
LKH): Perrig et al. [28,36] proposed a variant of STR using
a binary tree (less deeper) in order to reduce the number
of key calculations from the order of O(n) to O(log (n)).
Indeed the proposed protocol is a distributed version of
LKH. The tree is built recursively from bottom to up. Ini-
tially, each member Mi generates a random ri as a secret
key associated to its leaf. To build upper level of the tree,
two members: one as a leader of a left subtree and another

one as a leader of a right subtree, broadcast their respec-
tive DH computations and hence allow to all the members
to calculate the group key corresponding to the root of the
tree. Using the tree in figure 12, intermediate keys are
k12 = αk1k2 mod p, k34 = αk3k4 mod p and the group key
is k14 = αk12k34 mod p.

u3 u4u1 u2

k14

k12 k34

k4k3k2k1

Fig. 12. LKH Tree

Distributed Logical Key Hierarchy (D-LKH): A
similar distributed approach based on the logical key hi-
erarchy has been proposed by Rodeh et al. in [41]. In
this approach, the Key Server is completely abolished and
the logical key hierarchy is generated among the members,
therefore there is no entity that knows all the keys at the
same time. This protocol uses the notion of subtrees agree-
ing on a mutual key. This means that two groups of mem-
bers, namely subtree L and subtree R, agree on a mutual
encryption key. Member ml is assumed to be L’s leader
and member mr is R’s leader. Subtree L has subtree key
kL and subtree R has subtree key kR. The protocol used
to agree on a mutual key goes as follows:

1. Member ml chooses a new key kLR, and sends it to
member mr using a secure channel.

2. Member ml encrypts key kLR with key kL and multi-
casts it to members of subtree L; member mr encrypts
key kLR with key kR and multicasts it to members of
subtree R.

3. All members (L∪R) receive the new key.
Similarly, Dondeti et al. [17] and Waldvogel et al. [47]

propose distributed versions of OFT [2, 30] (D-OFT) and
CFKM [47] (D-CFKM) protocols respectively.

C.3 Broadcast-Based Approach

In this approach, the key agreement relies on broadcast-
ing secret messages and distributed computations that cul-
minate into the group key.

Fiat and Naor protocol: Fiat and Naor [22] pro-
posed a protocol that relies on Diffie-Hellman property

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3628International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

that consists in the requirement of each member to broad-
cast a single message to the other participants in order to
agree on a common secret. In the proposed protocol, a re-
liable center T initializes the system. T choses two primes
q1 and q2 and broadcasts p = q1.q2 to all nodes. Then, T
generates a random g and keeps it secret. When a new
member Mi joins the group, T sends to this new mem-
ber two values: a random xi (which is relatively prime
with each other xj previously generated for members Mj),
and a key αi = gxi mod p. Mi keeps αi secret. To agree
on a group key K, each member broadcasts its values xi

and hence each of them calculates K = α

∏
n

j=1,j �=i
xj

i mod p
= gx1x2...xn mod p. This protocol is not robust against col-
lusions as shown in [22], and has the drawback to require
a reliable third party: T.

Burmester and Desmedt protocol: Burmester
and Desmedt [9] proposed a very efficient protocol that
executes in only three rounds:

1. member mi generates its random exponent ri and
broadcasts Zi = αri ;

2. member mi computes and broadcasts Xi =
(Zi+1/Zi−1)ri ;

3. member mi can now compute the key Kn =
Znri

i−1.X
n−i
iXn−2 mod p.

The group key calculated by each member is then Kn =
αN1N2+N2N3+...NnN1 . This protocol requires n + 1 expo-
nentiations per member and in all but one the exponent
is at most n− 1. The drawback is the requirement of 2n
broadcast messages.

Conference Key Agreement (CKA): Boyd [7] pro-
posed yet another protocol for conference key agreement
(CKA) where all group members contribute to generating
the group key. The group key is generated with a combin-
ing function: K = f(N1,h(N2), . . . ,h(Nn)), where f is the
combining function (a MAC), h is a one-way function, n is
the group size, and Ni is the contribution from group mem-
ber i. The protocol specifies that n−1 members broadcast
their contributions (Ni) in the clear. The group leader, for
example U1, encrypts its contribution (N1) with the public
key of each member and broadcasts it. All group members
who had their public key used to encrypt N1 can decrypt
it and generate the group key.

C.4 Comparison

In table III we compare the presented distributed key
management protocols against the following criteria:

1. Number of rounds: the number of rounds required
before the members commit to a group key.

2. Number of messages: the number of messages re-
quired to establish the group key.

3. DH exchange: whether the protocol is based on Diffie-
Hellman key exchange.

4. Leader required : whether the protocol requires the
existence of a leader or leaders for the operation of
the key agreement protocol.

The protocols that do not rely on a group leader have an
advantage over those with a group leader because, without
a leader, all members are treated equally and if one or more

members fail to complete the protocol, it will not affect the
whole group. In the protocols with a group leader, a leader
failure is fatal for creating the group key and the operation
has to be restarted from scratch. We did not consider the
1-affects-n phenomenon because in distributed protocols
all the members are contributors in the creation of the
group key and hence all of them should commit to the new
key whenever a membership change occurs in the group.

VI. Independent TEK per sub-group

The common TEK approach has the drawback to re-
quire that all group members commit to a new TEK, when-
ever a membership change occurs in the group, in order to
ensure perfect backward and forward secrecy. This is com-
monly called 1-affects-n phenomenon. In order to miti-
gate the 1-affects-n phenomenon, another approach con-
sists in organizing group members into sub-groups. Each
sub-group uses its own independent TEK. Indeed, in this
scheme when a membership change occurs in a subgroup, it
affects only the members belonging to the same sub-group.
The existing protocols that use independent TEK per sub-
group fall into two sub-categories: the membership-driven
re-keying protocols that do re-keying after each member-
ship change, and time-driven re-keying protocols that do
batch re-keying after each period of time. Figure 3 illus-
trates this classification.

A. Membership-Driven Re-keying

Iolus: Mittra [31] proposed Iolus, a framework of a hier-
archy of multicast sub-groups. Each sub-group is an inde-
pendent multicast group (with its own multicast address
and eventually its own multicast routing protocol). The
overall sub-groups form a virtual multicast group. Each
sub-group is managed by a Group Security Agent (GSA)
which is responsible for key management inside the sub-
group. A main controller called the Group Security Con-
troller (GSC) manages the GSAs. Figure 13 illustrates a
hierarchy with six sub-groups. Each of them uses its own
TEK.

TEK5

TEK4

TEK3

TEK2

TEK1
GSC

GSA

GSA

GSA

GSA

GSA

TEK6

����

��

��

��

�� ��
��
��
��

Fig. 13. An example of a Iolus architecture

When a membership change occurs in a sub-group, only
that sub-group is involved in a re-key process. This way,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3629International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

TABLE III

Comparison of Distributed Key Management Protocols

Scheme Nb. rounds Nb. messages DH exchange Leader required
multicast unicast

Ingemarson et al. n− 1 0 n(n− 1) Yes No
GDH n n n− 1 Yes No

Octopus 2(n− 1)/4 + 2 0 3n− 4 Yes Yes
STR n n 0 Yes No

DH-LKH log2 n log2 n 0 Yes No
D-LKH 3 1 n No Yes
D-OFT log2 n 0 2log2 n No No

D-CFKM n 0 2n− 1 No No
Fiat et al. 2 n n Yes Yes

Burmester et al. 3 2n 0 No No
CKA 3 n n− 1 No Yes

Iolus scales to large groups and mitigates 1-affects-n phe-
nomenon. However, Iolus has the drawback of affecting
the data path. Indeed, there is a need for translating the
data that goes from one sub-group, and thereby one key,
to another. This induces decryption / re-encryption op-
erations that are not tolerated by most of delay sensitive
applications.

Keyed HIerarchical multicast Protocol
(KHIP): Shields et al. [44] proposed the Keyed HIerar-
chical multicast Protocol (KHIP). KHIP is based on a
multicast tree built using OCBT [43] routing protocol, and
uses a different TEK per each branch of the tree. It uses
also an authentication service [23] based on certification to
authenticate members and on-tree routers. The multicast
tree is organized into sub-branches. Each sub-branch is
managed by a trusted router which manages the TEK
used within this sub-branch. When a source is ready to
send a message to the group, it generates a random key
KT , encrypts the message with KT , and encrypts KT

with the TEK of the sub-branch to which the source is
attached. Then the source puts the encrypted KT in the
header of the packet carrying the message and multicasts
the packet. The members located in the same sub-branch
know the TEK of the sub-branch and hence can decrypt
the KT and then decrypt the message with KT . When a
border router of the sub-branch (a trusted router at the
intersect between two sub-branches) receives the packet, it
decrypts the KT and re-encrypts it using the TEK of the
adjacent sub-branch to which the so translated packet will
be forwarded. This process is followed until the message
reaches all the group members. When a new member joins
a sub-group, the router responsible for that sub-branch
generates and distributes a new TEK for the sub-branch
encrypted with the old one. When a member leaves a
sub-branch, the corresponding router distributes a new
TEK encrypted with the public key of each remaining
member and signed with the router’s private key.

Even thought KHIP reduces the decryption / re-
encryption operations to a single key per packet, it still
suffers from the delay variations of packet delivery due
to these operations, and most of applications that require
real-time transmission do not tolerate such delays.

Cipher Sequences (CS): Molva and Pannetrat [32]
proposed a framework for multicast security that is based

on Reversible Cipher Sequences. A function f(S, a) is
called Cipher Group (CG) if it has the following character-
istics: there is a sequence of n elements ai(1 ≤ i ≤ n), and
there is a sequence of n + 1 elements Si (0 ≤ i ≤ n), such
as Si = f(Si−1,ai) for i > 0 and S0 is the initial value; and
for every pair (i, j), where i > j, there exists a function
hi,j such as Si = hi,j(Sj). The multicast tree is rooted at
the source, the group members are the leaves and internal
nodes are intermediate elements of the multicast commu-
nication. Now, let S0 be the message to be multicast and
let every node Ni be assigned a value ai > 1. When node
Ni receives a value Sj from its parent Nj , it computes
Si = f(Sj , ai) and sends Si to its children that can be ei-
ther leaves or other internal nodes. The leaves are assigned
the function h0,n, which enables them to compute S0 from
Sn, since S0 = h0,n(Sn), and therefore recover the original
data. Figure 14 shows an example of Molva’s scheme that
may be described as:

a1
S1

a2

N2

S2
a3 S3 h(0,S3)

a4

leavesnoderoot

L4
N3

N4

S0

Fig. 14. An example of Molva’s scheme

1. the root calculates S1 = f(S0,a1) and sends S1 to N2

and N4;
2. node N2 calculates S2 = f(S1,a2) and sends S2 to N3;
3. node N3 calculates S3 = f(S2, a3) and sends S3 to

leaves L4;
4. leaves L4 calculate S0 = h0,4(S3) and recover the orig-

inal data: S0.
When a membership change occurs in a leaf, the corre-

sponding node Nn receives a new value a′

n and all members
in the leaf receives a new function h′

0,n. Naturally, if the
membership change occurred because of member removal,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3630International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

the removed member will not receive the new h′

0,n, thus
will not be able to recover S0.

SAKM: Challal et al. [12] proposed a new Scalable
and Adaptive Key Management scheme (SAKM) that ad-
dresses the 1-affects-n and re-keying overheads by taking
into consideration the dynamic aspect of the group mem-
bers. SAKM tackles the scalability issue by organizing the
multicast group into clusters, where each cluster uses its
own TEK. Figure 15 illustrates the different components
of the proposed architecture.

Cluster3Cluster2 Cluster1

TEK2

SAKM_Agent
Passive

TEK2

SAKM_Agent
Passive

SAKM_Agent
Active

SAKM_Agent

TEK1

TEK1

TEK3

TEK2

Active

Active

SAKM_Agent

Passive

SAKM_Agent

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Fig. 15. SAKM Architecture

In contrast to existing solutions that use this concept,
with SAKM: the organization of the group into clusters is
updated periodically depending on the dynamism of the
members during the secure session. The partitioning aims
to minimize both key translation and re-keying overheads
depending on the membership change behavior. Indeed,
many studies [1] show that the membership behavior of
group members in multicast sessions is likely to be not
uniform through a large scale group and during the whole
session. Some parts of the network may be more dynamic
than others during some periods of time and become more
stable afterward. In this case, it would be interesting to
use a protocol that restricts the re-key to the areas with
frequent membership changes. Thereby, SAKM is very
efficient in such situations. Simulation results show that
SAKM scales well to large groups by minimizing the 1-
affects-n phenomenon, while it reduces the decryption / re-
encryption operations thanks to the adaptive dimensioning
of the clusters depending on the membership dynamism.

B. Time-Driven Re-keying

Yang et al. protocol: Yand et al. [52] proposed a
reliable re-keying approach. In the proposed architecture,
the multicast group is organized into a set of subgroups,
where each subgroup is managed by a Key Server (KS).
The role of a KS is to re-key the members of its subgroup
periodically. In other words, the membership changes that
occur during a specific period of time are batched, then
the KS makes a single re-key that takes into considera-
tion those membership changes. The overall KSs share a
common KS secret key. When a KS receives a multicast
message encrypted with its local TEK (sent by one of its
subgroup members), it decrypts it and re-encrypts it using
the KS secret key. Then, it multicasts the so re-encrypted

message to the other KSs. In turn, these KSs decrypt the
message using the KS secret key and re-encrypt it using
their respective local TEKs. Then, each KS multicasts the
so re-encrypted message to its subgroup.

Scalable Infrastructure for Multicast Key
Management (SIM-KM): Mukherjee and Atwood [34]
proposed a multicast key management infrastructure called
SIM-KM: Scalable Infrastructure for Multicast Key Man-
agement. SIM-KM bases on subgrouping with message
transformation by local controllers. In contrast to solutions
based on subgrouping, SIM-KM uses proxy encryption [33]
to transform data at the border of a subgroup. Proxy func-
tions convert cipher text for one key into cipher text for
another key without revealing secret decryption keys or
clear text messages. This allows SIM-KM to do subgroup-
ing with data transformation in order to limit the impact
of re-keying, even thought intermediaries are not trusted
entities.

C. Comparison

In table IV, we compare some of the above protocols
against the following criteria:

1. Key independence
2. 1-affects-n
3. Local re-key : membership changes in a sub-group

should be treated locally.
4. Data transformation: data is transformed using some

means when messages pass from a sub-group to an-
other.

We notice that Iolus, Cipher Sequences, Yang et al. and
SIM-KM protocols affect the data path when the messages
pass through a subgroup. KHIP does not transform data
itself but transforms the keys with which data is encrypted
and hence reduces the delays induced by the transforma-
tions at the borders of sub-groups. SIM-KM uses proxy
encryption that allows to transform data without having
to reveal encryption keys or clear text, and thereby the pro-
tocol is more suitable for situations where local controllers
may be not trustworthy. The overall protocols succeed to
mitigate the 1-affects-n phenomenon, since they use an in-
dependent TEK per sub-group, and hence a membership
change in a subgroup affects only members belonging to
the same subgroup. However, reducing 1-affects-n phe-
nomenon is not for free: the multicast messages (or keys
for KHIP) should be transformed by the Local sub-group
controllers whenever they pass through a new subgroup.
These transformations affect the packet delivery delays,
and unfortunately this is not suitable for many applica-
tions that require real-time transmission.

D. Conclusion

In this paper we have presented a state of the art of group
key management. We have classified existing solutions into
two main categories: the common TEK approach and the
TEK per subgroup approach. Throughout this paper, we
refined this classification according to the common con-
cept and techniques used by the proposed solutions. We

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3631International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

TABLE IV

Comparison of some decentralized group key management protocols

Protocol Key independence 1-affects-n Local re-key Data transformation

Iolus Yes No Yes Yes
KHIP Yes No Yes No

Cipher Sequences Yes No No Yes
Yang et al. Yes No Yes Yes
SIM-KM No No Yes Yes
SAKM Yes No Yes Yes

illustrated each identified sub-category with relevant solu-
tions from the literature, and we compared them against
pertinent performance criteria. We showed that both pro-
posed approaches suffer from great concerns depending on
group dynamism: the common TEK approach suffers from
the 1-affects-n phenomenon, where a single group mem-
bership change (join or leave) results in a re-keying process
that disturbs all group members to update the TEK. More-
over, centralized protocols are not scalable, and distributed
ones bring new challenges such as synchronization and con-
flict resolution. Time-driven re-keying protocols attempt
to reduce the 1-affects-n phenomenon by batch re-keying,
but then cannot be used with critical applications that re-
quire to take into consideration the membership change
instantly. On the other hand, the TEK per subgroup ap-
proach reduces the 1-affects-n problem. This is advanta-
geous for highly dynamic multicast groups. However, this
approach requires transformation of sent messages when-
ever they pass from a sub-group to another, and this may
not be tolerated by applications that are sensitive to packet
delivery delay variations. We conclude that there is not a
best solution, but there good solutions depending on the
application level requirements and features.

References

[1] K. Almeroth and M. Ammar. Collecting and modelling the
join/leave behaviour of multicast group members in the Mbone.
Symposium on High Performance Distributed Computing, 1996.

[2] D. Balenson, D. McGrew, and A. Sherman. Key Manage-
ment for Large Dynamic Groups : One-Way Function Trees
and Amortized Initialization. draft-balenson-groupkeymgmt-
oft-00.txt, February 1999. Internet-Draft.

[3] A. Ballardie. Scalable Multicast Key Distribution, May 1996.
RFC 1949.

[4] A. Ballardie. Core Based Trees (CBT version 2) Multicast Rout-
ing protocol specification, September 1997. RFC 2189.

[5] T. Ballardie, I.P. Francis, and J. Crowcroft. Core Based Trees:
an Architecture for Scalable Inter-domain Multicast Routing.
ACM SIGCOMM, pages 85–95, 1993.

[6] C. Becker and U. Wille. Communication complexity of group
key distribution. 5th ACM Conference on Computerand Com-
munications Security, Nowember 1998.

[7] C. Boyd. On key agreement and conference key agreement.
Information Security and Privacy: Australasian Conference,
LNCS(1270):294–302, 1997.

[8] B. Briscoe. MARKS: Multicast key management using arbi-
trarily revealed key sequences. 1st International Workshop on
Networked Group Communication, November 1999.

[9] M. Burmester and Y. Desmedt. A secure and efficient conference
key distribution system. EUROCRYP’94, LNCS(950):275–286,
1994.

[10] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas. Multicast Security: A taxonomy and Efficient Con-
structions. IEEE INFOCOM, pages 708–716, March 1999.

[11] G. Chaddoud, I. Chrisment, and A. Shaff. Dynamic Group Com-
munication Security. 6th IEEE Symposium on computers and
communication, 2001.

[12] Y. Challal, H. Bettahar, and A. Bouabdallah. SAKM: A Scal-
able and Adaptive Key Management Approach for Multicast
Communications. ACM SIGCOMM Computer Communica-
tions Review, 34(2):55–70, April 2004.

[13] G. H. Chiou and W. T. Chen. Secure Broadcast using Secure
Lock. IEEE Transactions on Software Engineering, 15(8):929–
934, August 1989.

[14] H.H. Chu, L. Qiao, and K. Nahrstedt. A Secure Multicast Pro-
tocol with Copyright Protection. ACM SIGCOMM Computer
Communications Review, 32(2):42:60, April 2002.

[15] B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono, D. Kiwior,
J. Kurose, D. Towsley, S. Vasudevan, and C. Zhang. Secure
group communications for wireless networks. MILCOM, June
2001.

[16] W. Diffie and M.E. Hellman. New directions in cryptogra-
phy. IEEE Transactions on Information Theory, IT-22:644–654,
November 1976.

[17] L. Dondeti, S. Mukherjee, and A. Samal. A distributed group
key management scheme for secure many-to-many communica-
tion. Technical Report PINTL-TR-207-99, 1999.

[18] L. R. Dondeti, S. Mukherjee, and A. Samal. Scalable secure one-
to-many group communication using dual encryption. Computer
Communications, 23(17):1681–1701, November 2000.

[19] L.R. Dondeti, S. Mukherjee, and A. Samal. Comparison of Hi-
erarchical Key Distribution Schemes. IEEE Globcom Global In-
ternet Symposium, 1999.

[20] L.R. Dondeti, S. Mukherjee, and A. Samal. Survey and Compar-
ison of Secure Group Communication Protocols, 1999. Technical
Report.

[21] T. Dunigan and C. Cao. Group Key Management. Technical
Report ORNL/TM-13470, 1998.

[22] A. Fiat and M. Naor. Broadcast Encryption. CRYPTO’93,
LNCS(773):480–491, 1993.

[23] L. Gong and N. Shacham. Trade-offs in Routing Private Multi-
cast Traffic. GLOBECOM’95, November 1995.

[24] T. Hardjono, B. Cain, and I. Monga. Intra-domain Group
Key Management for Multicast Security. IETF Internet draft,
September 2000.

[25] H. Harney and C. Muckenhirn. Group Key Management Pro-
tocol (GKMP) Architecture, July 1997. RFC 2093.

[26] H. Harney and C. Muckenhirn. Group Key Management Pro-
tocol (GKMP) Specification, July 1997. RFC 2094.

[27] I. Ingemarson, D. Tang, and C. Wong. A Conference Key Dis-
tribution System. IEEE Transactions on Information Theory,
28(5):714–720, September 1982.

[28] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant
Key Agreement for Dynamic Collaborative groups. 7th ACM
Conference on Computer and Communications Security, pages
235–244, November 2000.

[29] Y. Kim, A. Perrig, and G. Tsudik. Communication-Efficient
group Key Agreement. IFIP SEC, June 2001.

[30] D.A. McGrew and A.T. Sherman. Key Establishement in Large
Dynamic Groups using One-way Function Trees. Technical Re-
port TR-0755, May 1998.

[31] S. Mittra. Iolus : A Framework for Scalable Secure Multicasting.
ACM SIGCOMM, 1997.

[32] R. Molva and A. Pannetrat. Scalable Multicast Security in dy-
namic groups. 6th ACM Conference on Computer and Commu-
nication Security, November 1999.

[33] R. Mukherjee and J.W. Atwood. Proxy Encryptions for Secure
Multicast Key Management. IEEE Local Computer Networks -
LCN’03, October 2003.

[34] R. Mukherjee and J.W. Atwood. SIM-KM: Scalable Infrastruc-
ture for Multicast Key Management. IEEE Local Computer
Networks - LCN’04, pages 335–342, November 2004.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3632International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

[35] R. Oppliger and A. Albanese. Distributed registration and key
distribution (DiRK). Proceedings of the 12th International Con-
ference on Information Security IFIP SEC’96, 1996.

[36] A. Perrig. Efficient Collaborative key Management protocols
for Secure Autonomous Group Communication. International
Workshop on Cryptographic techniques and E-commerce, 1999.

[37] A. Perrig, D. Song, and J.D. Tygar. ELK, a new protocol for
Efficient Large-group Key distribution. IEEE Security and Pri-
avcy Symposium, May 2001.

[38] R. Poovendram, S. Ahmed, S. Corson, and J. Baras. A Scalable
Extension of Group Key Management Protocol. 2nd Annual
ATRIP Conference, pages 187–191, February 1998.

[39] S. Rafaeli and D. Hutchison. Hydra: a decentralized group key
management. 11th IEEE International WETICE: Enterprise
Security Workshop, June 2002.

[40] R. Rivest. The MD5 Message-Digest Algorithm, April 1992.
RFC 1321.

[41] O. Rodeh, K. Birman, and D. Dolev. Optimized group rekey for
group communication systems. Network and Distributed System
Security, February 2000.

[42] S. Setia, S. Koussih, S. Jajodia, and E. Harder. Kronos: A
scalable group re-keying approach for secure multicast. IEEE
Symposium on Security and Privacy, May 2000.

[43] C. Shields and J.J. Garcia-Luna-Aceves. The Ordered Core
Based Tree Protocol. IEEE INFOCOM’97, April 1997.

[44] C. Shields and J.J. Garcia-Luna-Aceves. KHIP-A scalable pro-
tocol for secure multicast routing. ACM SIGCOMM Computer
Communication Review, 29(4):53–64, October 1999.

[45] D. Steer, L.L. Strawczynski, W. Diffie, and M. Weiner. A Secure
Audio Teleconference System. CRYPTO’88, 1988.

[46] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman key dis-
tribution extended to group communication. 3rd ACM Confer-
ence on Computer and Communications Security, pages 31–37,
March 1996.

[47] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, , and B. Plattner.
The VersaKey Framework : Versatile Group Key Management.
IEEE Journal on Selected Areas in Communications (Special
Issues on Middleware), 17(8):1614–1631, August 1999.

[48] D. Wallner, E. Harder, and R. Agee. Key Management for
Multicast : Issues and Architecture. National Security Agency,
June 1999. RFC 2627.

[49] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group Commu-
nications Using Key Graphs. ACM SIGCOMM, 1998.

[50] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group Com-
munications Using Key Graphs. IEEE/ACM Transactions on
Networking, 8(1):16–30, February 2000.

[51] C.K. Wong and S.S. Lam. Keystone: A group Key Management
Service. International Conference on Telecommunication, May
2000.

[52] Y.R. Yang, X.S. Li, X.B. Zhang, and S.S. Lam. Reliable Group
Rekeying: A Performance Analysis. TR-01-21, June 2001.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:10, 2008

3633International Scholarly and Scientific Research & Innovation 2(10) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

10
, 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

18
04

.p
df

