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Abstract—Stock portfolio selection is a classic problem in financepaper, besides the Markowitz model, we would also employ
and it involves deciding how to allocate an institution'saorindivid-  the Sharpe ratio [3] as our measurement criterion.
ual’s wealth to a number of stocks, with certain investmeajéctives Basically, the classical Markowitz model can be reformu-

(return and risk). In this paper, we adopt the classical daikz lated drati : bl d th luti
mean-variance model and consider an additional commoristieal '21€0 @S a quadratic programming probiem, an € solutions

constraint, namely, the cardinality constraint. Thuscistportfolio  ¢an be found by the Critical Line Method (CLM) [1]. However,
optimization becomes a mixed-integer quadratic programgnprob- in real operations, there are many other practical comggai

lem and it is difficult to be solved by exact optimization aigfums. such as cardinality, transaction costs, round-lot, etcthia
Chemical Reaction Optimization (CRO), which mimics the eaollar paper, we consider the cardinality constraints togethén wi

interactions in a chemical reaction process, is a popuidiased . L . .
metaheuristic method. Two different types of CRO, nameduial the Markowitz model. Taking into account the administrativ

CRO and Super Molecule-based CRO (S-CRO), are proposedito s¢0Sts, we usually limit the total number of stocks in a pdidto
the stock portfolio selection problem. We test both camani@RO Thus, the Markowitz model with the cardinality constraints

and S-CRO on a benchmark and compare their performance ung@gll be reduced to a mix-integer quadratic programming prob
two criteria: Markowitz efficient frontier (Pareto frontjeand Sharpe o1 This is anNP-hard [6] problem and its optimal solution
irr?t;]oéngﬁ%pfggtggi:( %ﬁﬁg%egﬁi;?fg?:; g:itbli;ﬁRo I0g g computationally intractable Wheq the number of stocks is
large. Alternatively, some metaheuristic-based methduistw
can obtain approximate solutions in a reasonable time have
been applied. These metaheuristics include Genetic Alguri
(GA) [7], [8], Simulated Annealing (SA) [9], Particle Swarm
I. INTRODUCTION Optimization (PSO) [10], Ant Colony Optimization (ACO)
éll], etc. However, each of these metaheuristics has its own

Keywords—Stock portfolio selection, Markowitz model, Chemical
Reaction Optimization, Sharpe ratio

S a proverb said, “Do not put all your eggs into on )
basket”, the risk in the stock market can be reduced rawbac_ks_. (1) For G.A’ since many chromosomes are coded
i : . . to a similar portfolio or similar chromosomes have very
holding a variety of stocks rather than owning a few or a gingl,. ) - . . i
. . different portfolios, the efficiency is quite low; (2) SA dves
one. The purpose of stock portfolio management is to selec. ) ; . ;
) . with only one solution and thus will easily get stuck in a
an appropriate set of stocks and to compute the portion Igcal optimum when the search space is large and rugged; (3)
the budget allocated to each stock so as to meet the investqQrs P P 9 gged,

objectives (return and risk) and economic constraintsiidiiy, or PSO, its application _to portiolio §electlon IS still e,
) . and only employed to find one optimal solution under the
tax treatment, and unique circumstances).

Modern portfolio theory, established by Nobel laurea criterion of _Sh.arpe ratio, rather than_determmmg the whol

. ) . . areto frontier; (4) For ACO, though it can obtain the whole
Markowitz [1], [2] in 1952, is the core of portfolio manage- . .

: . S areto frontier, points are concentrated on the upper gart o

ment and has been widely used in practice in finance. The . . .

. . . e frontier, where both return and risk are high.
Markowitz model takes the variance as the risk and assume : : L ;

. : . : e hemical Reaction Optimization (CRO) [12] is an evolu-
that rational investors are risk averse, which means iddafs

prefer less risk to more risk. The goal of the Markowitz modé'lOnary metaheuristic approach, motivated by the molecule

is to seek a trade-off between return and risk, i.e., maximgiz energy exchange n a chem|ga| reaction. Despite being a
relatively new evolutionary algorithm, CRO has been shawn t

the expected return for a given level of risk or minimizin%njoy the advantages of both GA and SA and to have a more
the risk for a certain level of expected return. Based on tl"ﬁs

: . exible structure [13]. Moreover, CRO has already demon-
[2]0 dgrr]r:j pg{éfr?go[é?egt)é’ rgzsggs:f;lg;sh;;p; [:sg]c,h?a'ri]t:gs %t)rrated its excellent performance in handling probleme lik
portfolio selection. The Sharpe ratio (also known as reward P;asg?tgcﬁzzlgl??egg; ?LGTR((?F;ASPID); R&S]Zz:]cj'iggisﬂﬂgi t
variability ratio) [3], proposed by Sharpe in 1966, chaesizes ) 9 ' 9

how well one will be compensated if he bears more risk. ﬁroblem (CAP) in wireless mesh networks [12], Grid Schedul-

is broadly adopted as a portfolio selection strategy by maiﬁp Problem (GSP) [14], and Population Transition Problam i

financial analysts for its simple and intuitive meaning. hist - oo -0 Peer live streaming [15], etc. In this paper, wppse
y P 9: a new CRO with the super molecule scheme (S-CRO), together
Jin Xu and Victor OK. Li are with the Department of Electlicand With the cangnlcal CRO- Both of them are applied to solve the
Electronic Engineering, The University of Hong Kong, Pdiafa Road, Hong Stock portfolio selection problem.
Kong, China Email:{xujin,vii } @eee.hku.hk. _ g The remainder of this paper is organized as follows. We
Albert Y.S. Lam is with the Department of Electrical Engirieg and . d both the Markowi del d the Sh .
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application of CRO. Section IlI firstly describes the basic ~ Return(E )
idea and framework of the canonical CRO, and then gives
a detailed illustration of our proposed S-CRO. Computaion
experiments and results are shown in Section IV. Finally, th
last section contains a summary of our work and topics for
future investigation.

Efficient Frontier

[I. THE OPTIMIZATION MODEL Variance(O'; )

A. The Markowitz mean-variance model
. . . Fig. 1. Markowitz Efficient Frontier
According to modern portfolio theory, the investors are

rational which means they are risk-opposing. Moreover, de-

pending on their own economic conditions, people have difhile the stock return may be negative. Thus, we reformdlate
ferent levels of tolerance to risk. In the Markowitz modékt the problem as follows:

return on a portfolio is calculated by the expected valuénef t

2
portfolio return, and the corresponding risk is quantifigdte min F =ye5) 4 (1 —y)er, 7€ [0,1] ()
variance of the portfolio return. Markowitz assumes that th =ye(mZwimB) (] _ y)ed 2o wimiwin; Covig
aim of the investors is to determine a set of portfolio whiah ¢
minimize the risk while fulfilling a predetermined expected N
return. Mathematically, the standard Markowitz meanamce  subject to: Zwmi =1, (6)
model can be formulated as follows [1]: i=1
NN w;i>0 i=1,2,....N, (7)
. 2 N
- ;;%%C% @ S =M, {01} i=12..N, (8
=1
N whereM is the number of stocks in a portfolio, whitecan be
subject to: E, = Zwi R; > Epre, (2) considered as the investors’ risk tolerance coefficignt: 1
i—1 and~ = 0 are two extreme conditions, wherein the former
N means the investor completely ignores risk and only wants
Zw"' =1, (3) to maximize the return, while the latter is an absolutelk ris
i=1 averse investor who only wants to minimize the risk. Once the
w; >0 1=1,2,...,N, (4) ~ of an investor is determined, its optimized portfolio is the

] ) ) point where the indifference curve is tangent to the efficien
where N is the number of available stocks and is the frontier.

proportion of capital assigned to StockFor eachi, R; is
its expected return in a given time periadov; ; represents
the covariance between stocksind j, and wheni equals; _ _ o o
in (1), Cov; ; becomes the variance afo2 and E,, stand for As mentioned above, the Markowitz efficient frontier is a
the variance and expected return of the portfolio, respelgti useful tool for investors to determine their portfolios.\irver,
Constraint (2) guarantees the expected return of the piortfothe degree of an investor's risk aversion is difficult to beu
will not be less than a predefined valig,... The weights tified since it also relies on many factors, such as investor’
sum to one as shown in Constraint (3), while Constraint (&ge. family situation, current cash reserves, insuranvereo
implies shot selling is not allowed. age, etc. Thus, in most situations, we also need to calculate
Strictly speaking, with enough computer power, we caf€ Sharpe ratio as a reference for investors. Sharpe ®atio i
generate the set of efficient portfolios from among all thésed to measure the risk-adjusted performance of a partfoli
possible combinations of all the stocks available. In adajt the greater the Sharpe ratio, the better its performance. In
a portfolio is said to be efficient if no other portfolio carParticular, the portfolio with the greatest Sharpe ratis laa
render a higher expected return with the same (or |Owe<,ipnificant meaning to investors, and the correspondingainod
risk or if no other portfolio offers lower risk with the samecan be defined as:
(or higher) return. Thus, we can draw the whole Markowitz mazr SR — E, — Ry ©)
efficient frontier as shown in Fig. 1, which is helpful in our op
decision for the portfolio selection. _ _whereR; is the risk-free return (like treasury bond rate) and it
By including Constraint (2) in (1) in a Lagrangian relaxatio ., pe regarded as a constant, apds the standard deviation
fashion [6], the Markowitz model can be regarded as a Rit he portfolio return. In order to convert it to a minimiiat
objectlv.e function. Moreovgr, we add_ .the cardinality as Broblem, we reconstruct it as:
constraint to the model, which can facilitate the managemen
of the portfolio. It is important to note that the objective min S=1—
function value should be nonnegative when employing CRO, Op

B. The Sharpe ratio

(10)
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In the following sections, the proposed CRO approacheswill  iv If there is enough enerdyfor the new molecule(s)
be employed to determine the generalized Markowitz efftcien to be generated, replace the original molecule(s) with
frontier as well as compute the greatest Sharpe ratio. the new one(s), and update the relevidkt

v Else maintain the original molecule(s)

3) Output the global minimum solution and its correspond-

I1l. THE PROPOSEDALGORITHMS ing values.

A. The canonical CRO
B. The super molecule-based CRO

Detailed discussions of Chemical Reaction Optimization -
(CRO) can be found in [12]. Here we only give a brief One advantage of CRO over other metaheuristic methods
description of this method ' Is its flexible structure which can be easily adjusted to f& th

Chemical Reaction Optimization is a new population—bas%g;f)blem' We can reconstruct the CRO process by choosing

! . . L ifferent combination of elementary reactions. In our mregxd
strategy used to approximate optimal solutions to optitiora L
ST X super molecule-based CRO (S-CRO) as shown in Fig. 2, the
and search problems. The underlying idea of this approac

. : . . main body of the algorithm can be divided into three stages:
arises from an analogy with the chemical reaction process.

By following the phenomenon that products are always moret) 1he S-CRO evolves with only two elementary reactions,
stable than the reactants, molecules are inclined to sttheat -6 On-wall ineffective collision and inter-moleculaei
most stable energy state through a sequence of intermediate f€Ctive collision. This ensures the number of molecules
changes. Similarly, solutions in CRO tend to reach the dloba €Mains the same, and the goal is to make the molecules
minimum by performing predefined elementary reactions. explore as much as possible the solution space in their
Each molecule (solution) is characterized by attributes initial solutions ne|ghb_or_hoods.
such as potential energyPE), kinetic energy KE), num- 2) Analyze the ch_aracterlstlcs of all the molecules resdulte
ber of hits, minimum structure. Among these attributes, from the previous stage, and then produce a super
and KE correspond to the objective function value and the molecule based on 'Fhat' :
ability to accept worse solution, respectively, and theeogh 3) The super molecule is added t_o the container, and together
are used in the selection of elementary reactions. Moreover W'th the molecules frgm the f|r_st stage, performs canon-
the chemical reaction is assumed to take place in a closed 'Cff’ll CRO. T_he_: only.d|ﬁ‘erence |s_'§hat the super m.olecule
container, and there are four kinds of elementary reactions V_V'" not parﬂm_pate n decpmposmon and synthesis reac-
including on-wall ineffective collision, decompositiomter- tions. The main purpose is to prevent the super molecule
molecular ineffective collision, and synthesis. The forrveo from_ ch_angmg dramatically, which may destroy its good
involve only one molecule which collides with the wall of quality inherited from Stage 2.
container, while the latter two involve more than one molecu FOr stock portfolio selection, which is a mixed-integer
(usually two) that interact with each other. In additione thduadratic programming problem, we need not only to select a
number of molecule(s) remains constant in the two ineffecti mixture from a huge number of stocks, but also determine the
collisions (i.e. on-wall ineffective collision and intemelecular Proportion for each chosen stock. Thus, in our algorithmwe, t
ineffective collision) and only the neighborhoods of onigli Vectors are used to represent the solution. The stock victor
solution are searched. For the other two elementary reegticemployed to denote the selected stocks, while the proportio
one molecule is divided into several in the decompositioM€ctor depicts the corresponding percentage of investp# ca
while synthesis combines many molecules into one. Theléd Moreover, the schemes for the four elementary reagtion
two reactions generate new solutions very different from tiare listed for reference (Suppose there are 20 stocks tasehoo
original ones and they help the algorithm jump out of the locHom. and the cardinality is set to 5).

optimums. « On-wall ineffective collision: one-weight change in the
More precisely, the steps of canonical CRO are implemented Proportion vector. One element (bold) in the vector will
as follows for the stock portfolio selection problem: be selected randomly. Then, a random real number gen-

erated in the range [-t, t] (t is the step size) is added to it.
. . o . Finally, we normalize the vector to make all the elements
(solutions), calculate each solution’s objective funetio

value as itsPE, and initialize each molecule’s other sum to 1.
attributes. [0.110, 0.250,0.170, 0.330, 0.140] —

2) Until a stopping criterion is met, do: [0.110, 0.280, 0.170, 0.330, 0.140] —

i According to the parametevloleColl € [0.1], ran- [0_'107’0'272’0'165’_0'320’0'136]
domly choose one molecule or two molecules from * Decomposition: half-random in the stock vector [14].

1) Randomly generate a population of initial molecules

the population. Strings before decomposition
ii Based on the decomposition criteri@nor synthesis w: [1,6,8,15,20]
criterion 3, select one of the four elementary reac-
tions. 1For example, on-wall ineffective collision happens wHeR,, + K E,, >

i G h | | di h PE,, where w and w’ represent the original and the new molecule’s
iii Generate the new molecule(s) according to the Corrgg cyires, respectively. Readers can refer to [12] forethergy requirements

sponding reaction scheme. of other reactions.

International Scholarly and Scientific Research & Innovation 5(5) 2011 425 1SN1:0000000091950263



Open Science Index, Chemical and Molecular Engineering VVol:5, No:5, 2011 publications.waset.org/11346/pdf

World Academy of Science, Engineering and Technology
International Journal of Chemical and Molecular Engineering
Voal:5, No:5, 2011

Initialize population

Select molecule
(one is chosen)

///\\

No _—Tate ~ Yes

~ Collision?
\\ /

ﬂx! step criteria

~_ matched? _—

Yes

Generate and add the

super molecule
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J [ Check for any new ‘ {

min. point

i

\

B
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h matched? -

/

Obtain the global
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Fig. 2. Flowchart of S-CRO

String after decomposition
wi: [1,[4],8,[10] 20]
wh: [2],6,[9],15,[17]

« Inter-molecular ineffective collision: one-stock charige

the stock vector [14].
[1,6,8,15,20] — [1,4,8,15,20]

values of the risk tolerance coefficieptspaced evenly in the
rangel0, 1].

IV. COMPUTATIONAL EXPERIMENTS

We test our algorithms on a public OR library maintained by
Beasley [16]. The benchmark for the stock portfolio setecti
problem includes five sets of data, which are derived from
Hang Seng Index in Hong Kong with 31 stocks, DAX 100 in
Germany with 85 stocks, FTSE 100 in UK with 89 stocks,
S&P 100 in USA with 98 stocks and Nikkei 225 in Japan
with 225 stocks. These data record the weekly prices from
March 1992 to September 1997, and the mean return and
the covariance between stocks are publicly available &t [16
The parameters for canonical CRO and S-CRO are shown in
Table I, and they are coded in C++ and the simulations are
implemented on a PC with Intel Core 2 Duo-E677@2.66Hz
CPU and 2GB RAM. In addition, we will compare the
canonical CRO and S-CRO with the unconstrained efficient
frontiers, which are also provided by the benchmark.

TABLE |
PARAMETER SETTINGS FOR THE ALGORITHMS

Algorithm  Parameter Assigned value
Population size 25
«a 1500
B 0.1xinitial minimal fithess
Canonical KE loss rate 0.8
CRO MoleColl 0.2
Initial KE initial minimal fitness
Initial Energy 0
Iteration Number 100000
Cardinality M 10
For First stage iterations 50000

S-CRO Third stage iterations 50000

The graphical results of the Markowitz efficient frontier
for the canonical CRO and S-CRO are shown in Figs. 3,

« Synthesis: keep the same stocks of the two moleculgss 6 and 7. It is clear that S-CRO is much better than
in the new stock vector, and randomly generate thngnical CRO in terms of closeness to the true Pareto &onti

remaining.
Strings before synthesis
w1: [1,6,8,15,20]
wo: [3,6,8,11,20]
String after synthesis
W' [2,6,8,12,20]

In our problem, the super molecule is produced via three et
steps: 1) calculate the frequency of each stock existingnamo Lt .
the molecules left in the previous stage; 2) choose the mos £ . .
popular stocks for the stock vector of a super molecule; (3 A‘ 2EAENEACRD
compute the corresponding normalized proportion vector o= °* (f
the super molecule. To a certain extent, the super molecul
is similar to the “elite” in genetic algorithms. Howevereth
“elite” in GA is usually generated from two chromosomes, 0

without constraint. In fact, S-CRO almost coincides witle th
true Pareto frontier. This also confirms the rule of thumb

o012

a4 + Without constraint
= 5_CRO H

Return

0.002

0 0.001 0002 0.003 0.004 0.005 0.008

while the super molecule is based on all other molecules. Fui Veriance
thermore, for both canonical CRO and S-CRO, when drawing
the Markowitz efficient frontier, we will choose 100 differie Fig. 3. Markowitz efficient frontier for Hang Seng
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+ Without constraint

=5_CRO
& Ganonical CRO

00015 0002

Variance
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Fig. 4. Markowitz efficient frontier for DAX 100

0.009

0.008

0.007

0.006

0.005

Return

0.004

0.003

0.002

0.001

Fig. 5. Markowitz efficient frontier for FTSE 100

that putting a limited number of carefully chosen stocks
a portfolio can probably achieve better performance than

00025

0.003

+ Without constraint ||

»S_CRO
& Canonical CRO

0.0005 0.001 0.0015

Variance

0.002

0.0025

0.01

0009

0.008

" w £

Lk

0.007

0006

ry

0.005

+ Without constraint
= S_CRO =

Return

a Canonical CRQ

0004

0.003

0.002

0.001

0.0005

0.001

0.001% 0.002
Variance

00025

Fig. 6. Markowitz efficient frontier for S&P 100

00045

0.004

00035

0.003

00025

0.002

Retum

00015
0.001

00005

-0.0005

-0.001

Fig. 7.

working with all the stocks when taking into account the
administrative costs. However, we should also note that the
distribution of S-CRO points along the true Pareto frontier Stock portfolio selection is one of the most challenging
is not uniform. This is due to the choice of and if we problems in finance. We formulate it as a mix-integer quacirat
evaluate enough different values of accurate Markowitz programming problem with the cardinality constraint. INB-
efficient frontier can be obtained. Thus, the S-CRO algorithhard and the optimal solution is computationally intractable.
can be used as a tool to generate the efficient frontier for tiRO is a new metaheuristic inspired by the molecular evolu-
investors.

In order to reduce the random impact from the algorithscheme (named S-CRO) by adding a super molecule to the
itself, we repeat 50 times to calculate the Sharpe ratio aadolutionary process. Accordingly, the structure of cacan
compute the average and standard deviation. The resultsC&O was tailored to fit S-CRO. Then, both S-CRO and
canonical CRO and S-CRO are listed in Table II. For all fiveanonical CRO have been tested and compared under five
sets of data, the performance of S-CRO is superior to thatdifferent scenarios in terms of the Markowitz efficient ftien
canonical CRO in terms of Sharpe ratio, expected return aadd the Sharpe ratio. Simulation results show that our mego
variance. Specifically, when the number of stocks is huge lil5s-CRO performs much better than the canonical CRO and
the example of Nikkei 225, the advantage of S-CRO becomashieves the Pareto frontier, demonstrating its powerlwirsp
more significant. Moreover, another merit of S-CRO is it#he stock portfolio selection problem.
smaller standard deviation. This is quite useful in practic However, there are three things we need to note. Firstly,
since we do not need to repeat so many times to get a reliatle Markowitz model has its own limitations. It assumes
good solution, which can save us a lot of time. From Table lthe stock return follows the normal distribution while many
we can also observe that for each run, S-CRO consumes m@®earchers argue that the returns in real stock market are
CPU time than canonical CRO. This is mainly caused by tlesymmetrically distributed and other statistics (likevekess,
super molecule generation in S-CRO. However, the diffexenkurtosis) should be considered. The second problem is that
is not substantial, and it is worthwhile to spend a little morbesides the cardinality constraint, there are also mangroth
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0.003 0.0035

« Without constraint | |
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V. CONCLUSION
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tion in a chemical reaction. This paper proposes a new CRO
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TABLE Il
SHARPE RATIO RESULTS
Index canonical CRO S-CRO
Hang Seng  Sharpe ratio (Avg) 0.1908629 0.2104100
Sharpe ratio (SD) 0.0126028 0.0000010
Expected return (Avg) 0.0070479 0.0071060
Variance (Avg) 0.0013814 0.0011404
Time(s) (Avg) 0.121 0.125
DAX 100  Sharpe ratio (Avg) 0.2561531 0.36155%4
Sharpe ratio (SD) 0.0283834 0.0012485
Expected return (Avg) 0.0057178 0.0067509
Variance (Avg) 0.0005006 0.0003488§
Time(s) (Avg) 0.124 0.133
FTSE 100  Sharpe ratio (Avg) 0.2411870 0.29367123
Sharpe ratio (SD) 0.0140641 0.0011946
Expected return (Avg) 0.0053986 0.0056605
Variance (Avg) 0.0005113 0.0003716
Time(s) (Avg) 0.122 0.139
S&P 100 Sharpe ratio (Avg) 0.2547994 0.31014p1
Sharpe ratio (SD) 0.0116441 0.0022049
Expected return (Avg) 0.0051833 0.0056382
Variance (Avg) 0.0004170 0.0003311
Time(s) (Avg) 0.123 0.134
Nikkei 225  Sharpe ratio (Avg) 0.0760307 0.13915Y3
Sharpe ratio (SD) 0.0309694 0.0012423
Expected return (Avg) 0.0025319 0.0034318
Variance (Avg) 0.0011628 0.0006084
Time(s) (Avg) 0.121 0.142

practical constraints, such as transaction costs, rounda®
concerns, etc. They can be quite differentin different ¢oes.

[8] S. M. Wang, J. C. Chen, H. M. Wee, and K. J. Wang, “Non-linea
stochastic optimization using genetic algorithm for palitf selection,”
International Journal of Operations Researahgl. 3, no. 1, pp. 16-22,
2006.

[9] Y. Crama, and M. Schyns, “Simulated annealing for comppertfolio
selection problem,European Journal of Operational Researeio]. 150,
no. 3, pp. 546-571, 2003.

[10] G. Kendall, and Y. Su, “A particle swarm optimization papach in
the construction of optimal risky portfolios,in Proc. of the 23rd
LASTED International Multi-Conference on Artificial Inigence and
Applications,pp. 140-145, Innsbruck, Austria, 2005.

[11] R. Armananzas, and J. A. Lozano, “A multiobjective agmh to
the portfolio optimization problem,in Proc. of IEEE Congress on
Evolutionary Computation (CECpp. 1388-1395, Edinburgh, UK, 2005.

[12] A.Y.S.Lam and V. O. K. Li, “Chemical-Reaction-InspiteMetaheuris-
tic for Optimization,” IEEE Transactions on Evolutionary Computation,
vol. 14, no. 3, pp. 381-399, June 2010.

[13] J. Xu, A. Y.S. Lam, and V. O.K. Li, “Chemical reaction @pization
for task scheduling in grid computinglEEE Transactions on Parallel
and Distributed Systems (TPDS38 Jan. 2011.

[14] J.Xu, A.Y. S. Lam, and V. O. K. Li, “Chemical reaction apization for
the grid scheduling problemjh Proc. of IEEE Intl Conf. on Commun.
(ICC2010),May 2010.

[15] A.Y. S. Lam, J. Xu, and V. O. K. Li, “Chemical reaction apization
for population transition in peer-to-peer live streamiing, Proc. of IEEE
Congress on Evolutionary Computatiodyly 2010.

[16] http://people.brunel.ac.uk/ mastjjb/jeb/orlibfpofo.html

Finally, the analysis of historical price for a stock doeg no
mean we can predict its future trend precisely because the
stock market is very complicated. Therefore, our futurekwor

will refine the stock portfolio selection model by consideyi
additional market indicators.
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