
 
 

 

 

 

  
Abstract—We considered repeated-root cyclic codes whose 

block length is divisible by the characteristic of the underlying field. 
Cyclic self dual codes are also the repeated root cyclic codes. It is 
known about the one-level squaring construction for binary repeated 
root cyclic codes. In this correspondence, we introduced of two 
level squaring construction for binary repeated root cyclic codes of 

length 2a b , a > 0, b is odd. 
 

Keywords—Squaring Construction, generator matrix, self 
dual codes, cyclic codes, coset codes, repeated root cyclic 
codes. 

I. INTRODUCTION 
WO interesting codes in terms of pure mathematics are 
Cyclic and Self-Dual ones. As described Rains and 
Sloane [1], self-dual codes are an important class of 

linear codes for both theoretical and practical reasons. Many 
of best algebraic codes are self dual codes e.g. extended 
Hamming codes, extended Golay codes and the extended 
binary Q.R. Codes when ( )1 mod 8p = − . Their interesting 
properties have been investigated widely in [2], [3] and [4]. 
However, research on their combination of cyclic and self 
dual codes is rather limited. Nonetheless, an interesting result 
were proved by Carmen-Simona Nedeloaia[5] in his paper 
containing 1 – level squaring construction and the minimal 
distances of all binary Cyclic Self-Dual (hence CSD for 
convenience) codes up to lengths of 120 digits. Then 
Brandenburg [12] in his Bachelor’s thesis gave some 
definition and showed that the minimal distance of a CSD 
with length 2a b  has an upper bound of twice the minimal 
distance of a certain code with length b. Sloane and 
Thompson [6] introduced the class of self-dual repeated-root 
cyclic codes. On the other hand, Van Lint proved that 
repeated-root cyclic codes can be obtained via the 
well-known |u|u + v| construction [7]. Even though 
Castagnoli et al. proved in [8] that they cannot be 
asymptotically better than simple-root cyclic codes, 
repeated-root cyclic codes remain interesting objects. In 
general cyclic codes assume that gcd (n,p) = 1 where p is the 
characteristic of GF(q). This is equivalent to assuming that 
g(x) has no repeated irreducible factors, as follows from the 
fact that g(x) divides xn-1 but not its formal derivative nxn-1 
unless and only unless the latter is 0, which is equivalent to 
the condition that p divides n or, equivalently, that gcd (n,p) = 
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p > 1. The codes having these types of properties are called 
repeated root cyclic codes.  

Nedeloaia [3] derived the one - level squaring 
construction for all binary repeated root cyclic codes by using 
VanLint’s [7] result. In this paper we will use the result 
proved by Nadeloaia [3] and give the two – level squaring 
construction for all binary repeated root cyclic codes. 
Manuscript is arranged in following manner. In Section II we 
presented the notation and definition. In Section III we had 
given the previous results and some definition of theorems 
which will be help in our study and we derived the generator 
matrix for 2 – level squaring construction, 

II. NOTATION AND DEFINATION 
In this section we are giving the notation and definition 

which we will use through out the paper. The reference for 
this work is done from [3], [9], [10] and [11].  

An [n, k, d] -code (or [n,k] -code) is as usual in coding 
theory as k-dimensional linear subspace of nF .  Here F is a 
finite field and d is the minimal distance of the code. 

 

Definition 1:  We begin by examining partitions of codes 
into cosets by subcodes. Let 0C  be a binary linear 0[ , ]n k  
block with generator G0 and let 

1 0
C C⊂ be a [ ]1

,n k -sub code 
of 

0
C . A coset of  

1
C  is a set of the 

form { }1 1: .l lc C c c c C+ = + ∈ where 
0l

c C∈  is a coset leader. 

We will take that non zero coset leaders in 0 1\C C . 

0 1\C C forms a factor group, partitioning 0C  into 
0 12

k k− disjoint subsets each containing 12
k code words. Each 

of these subsets can be represented by a coset leader. The set 
of coset leaders is called the coset representative space. We 
denote this coset representative space by 0 1[ / ]C C . The code 

1C and the set 0 1[ / ]C C  share only the zero vector in 

common 1 0 1[ / ] 0C C C∩ = .  
Every codeword in C0 can be expressed as the sum of a 

codeword in 1C and a vector in 0 1[ / ]C C . We denote this as  

 0 1 0 1 1 0 1[ / ] { : , [ / ]}C C C C u v u C v C C= ⊕ = + ∈ ∈   
 

The set operand sum ⊕  is called the direct sum. 
 

Definition 2:  The |u | u + v| construction:-  
Let 1 2C and C be a linear binary [ ]1,  n k  and [ ]2,  n k  

block codes with the generator matrix 1 2G and G  and 
minimum distance d1 and d2. Then code C is defined by 

   | | | {[ | ]; , }1 1 2 1 2C C C C u u v u C v C= + = + ∈ ∈ .  

If G is generator of C  then  1 1

20

G G
G

G
=

⎡ ⎤
⎢ ⎥
⎣ ⎦
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 Kronecker product :- 
A B⊗ of an m n×  matrix A with p q×  matrix B is the 

.mp nq×  The k product is associative and distributive but 
not commutative  

  Direct sum:- Let 1G be generator matrix of  

[n1, k1, d1] – code and let 2G  be generator matrix of [n2, k2, 

d2] - code 2.C Then the direct sum of 1C  and C2 written 

1 2C C⊕  is [ ]1 2 1 2 1 2
, , min{ , }n n k k d d+ + - code  

 

Definition 3 : One particular group of block codes are the 
cyclic codes. A cyclic codes is an [n, k] code C with the 
property that if  

  ( )0 1, ......... nc c C− ∈    
then we also have    

  ( )1 0 2, ......... .n nc c c C− − ∈  
Usually n and q should be relatively prime. Where q is the 

number of elements in the field. In the context of this paper 
this last criteria will be waived. These codes are sometimes 
called repeated root of cyclic codes. It is possible to write a 
codeword ( )

0 1
.........

n
c c C

−
∈ in the form:          

  1
0 1 1..... [ ] /( 1)n n

nc c X c X F X X−
−+ + ∈ −  

If we have a cyclic code then  
 1

0 1 1.( ........ )n
nX c c X c X −

−+ +  
  = 2

1 2 1 0........ 1n n
nc c X c X c X−

−+ + + −  

is also a codeword. This means that if ( )c X C∈ then also 

( ) .Xc X C∈  Here the code C is an ideal in ( )[ ] / 1 .
n

F X X −  

Since ( )[ ] / 1
n

F X X −  is a principal ideals domain all ideals 
have a single generator. So we can write 

( ) ( ) | 1.
n

C g X where g X X=< > −  
 

 Definition 5 : If C is a code, then its dual is defined as  
  { } :  . 0  C u u v v C

⊥

= < >= ∀ ∈  

 If ......... , 0,0 1
mf x xm mα α α α= + + ≠  

then define its reciprocal polynomial by 

 ( )deg 11* ...0 1
fm mf x x x fm x

α α α ⎛ ⎞−= + + + = ⎜ ⎟
⎝ ⎠

 

 Cyclic Self Dual Codes :  C is called cyclic self dual ( 
CSD) if it is both cyclic and self dual. i.e. we can say that  

  1   *
nxC C f

f
−⊥= ⇒ =   

So if f is the generator of a CSD then 

. * 1.nf f x= − Also, we have ( )2 | 2 | .n and d C  
Cyclic Self Dual Codes are also called Repeated Root Cyclic 
Codes. 
A binary self dual code C is called doubly even if 

0iA = unless i is divisible by 4. 

A double even ( ),
2

n
n code exists if n is divisible by 8. 

 

Definition 6: - One level squaring [9]:- Let C0 and C1 be 
two codes then  

1

2
0| / |C C  = 1 0 1{( , ) : , [ / ]}a x b x a b C and x C C+ + ∈ ∈  

Where C1 is sub code of C0. 

Since ( ) ,C C
⊥⊥ = it follows that a generator matrix for the 

primal code serves as a parity check matrix for the dual code. 
Thus we have the following table. 

 

III. GENERATOR MATRIX FOR SQUARING CONSTRUCTION 
In this section we will derive the two level squaring 

construction for any repeated root cyclic code 
The one level square construction for all binary repeated 

root cyclic codes. 
 

Theorem 2 [5]:  The generator matrix for any binary 
repeated-root cyclic code CA/B can be written as 

      

0

0/

GA
G GA B A

G GB B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.  

Therefore 
/

2
| / |

A B
C A B   where GA and GB are the generator 

matrix of codes A and B of length n/2 respectively. 
 

Lemma 1 [5]: - For any i which ranges form [1, 2a – 1] the 
generator polynomial for a code C is  

      
1

1

1 2

( 1) .....

....... a

b
i

i

x g g

g g − +

+
 

 
Generator Matrix for any two level squaring constriction 
 
Proof: It being by forming the two one – level squaring 
construction codes 2

/ | / |A BC A B  and 

2
/ | / | ,B CC B C where A, B and C are codes of length 

2

n
and 

generator GA, GB and GC. Also B is sub code of A and C is 
sub code of B.  
Where as the generator matrix for binary repeated root cyclic 
codes CA/B and CB/C are GA/B and GB/C respectively which are 
given by  

  /

0

0

A

A B A

B B

G

G G

G G

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 and 

  /

0

0

B

B C B

C C

G

G G

G G

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Here CB/C  is a sub – code of CA/B The coset representative for 
CA/B / CB/C is denoted by CA/B / CB/C  for a binary repeated - 

Code Generator 
Matrix 

Parity Check 
Matrix 

C 
C⊥  

G 
H 

H 
G 
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root code. Then form a code 4
/ / | / / |A B C A B CC =  by 

 
{ }4

/ / 2 1 2 | / / |  , ; , [ / ]A B CC A B C a x b x a b C and x C C= = + + ∈ ∈  
Which we can say that is obtained by the squaring  
construction of  CA/B and CA/B / CB/C. Let GA/B/C is the 
generator matrix for CA/B/C So the generator matrix for C is  

  
/

/ / /

\ \

0

0
A B

A B C A B

B C B C

G

G G

G G

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Writing GA/B and GB/C and new defined GB\C as is defined 
2.1 and 2.2 we will get the following generator matrix for 
CA/B/C 

  / /

0 0 0

0 0 0

0 0

0 0 0

0 0 0

0 0

0 0

A

A

B B

A

A B C

A

B B

C C C C

B B

G

G

G G

G
G

G

G G

G G G G

G G

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Now to represent the above generator matrix in simple 
form we will apply some row transformations and we will get 
the following generator matrix for binary repeated-root 
cyclic code CA/B/C 

    

  GA/B/C = 

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

A

A

A

A

C C C C

B B B B

B B

B B

G

G

G

G

G G G G

G G G G

G G

G G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Now applying the fundamental rules which are also 
defined in Section II we can write the generator matrix of a 
code as CA/B/C 

 

4

1 1 1 1

[1 1 1 1] 0 0 1 1

0 1 0 1
C BG I G G= ⊗ ⊗ ⊕ ⊗

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

 

Where 

1 1 1 1

[1 1 1 1] 0 0 1 1

0 1 0 1

and
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

are generator matrices for the zeroth and first order Reed – 
Muller codes of length 4. 
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