
 

 

  
Abstract—Using maximal consistent blocks of tolerance relation 

on the universe in incomplete decision table, the concepts of join block 
and meet block are introduced and studied. Including tolerance class, 
other blocks such as tolerant kernel and compatible kernel of an object 
are also discussed at the same time. Upper and lower approximations 
based on those blocks are also defined. Default definite decision rules 
acquired from incomplete decision table are proposed in the paper. An 
incremental algorithm to update default definite decision rules is 
suggested for effective mining tasks from incomplete decision table 
into which data is appended. Through an example, we demonstrate 
how default definite decision rules based on maximal consistent 
blocks, join blocks and meet blocks are acquired and how optimization 
is done in support of  discernibility matrix and discernibility function 
in the incomplete decision table. 
 

Keywords—rough set, incomplete decision table, maximal 
consistent block, default definite decision rule, join and meet block.  

I. INTRODUCTION 
OUGH set theory [1,11,12] was put forward by Pawlak in 
1982 as a new mathematics tool and has been successively 

applied in many fields such as decision making, machine 
learning, automatic control, pattern recognition, data mining 
and etc[10,13,14]. The original rough set approach is efficient 
to discover rules from complete decision tables, whereas we 
always have to face incomplete decision tables (IDT) or 
incomplete information systems (IIS) in real situations because 
practical data occurs incomplete to some extent. Currently, 
people have proposed several rough set approaches to deal with 
IIS. For example, in [8] a rough set approach to reasoning in IIS 
is presented and how to derive decision rules directly from 
incomplete decision table is shown. In [10] a new method of 
generating all optimal certain rules from IDT is given and 
proven. [9] proposes a new mining algorithm , which can 
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simultaneously produce rules from incomplete data sets and 
estimate the missing values in the mining procedure.  
However, how to use join and meet of maximal consistent 

blocks to obtain optimally definite default decision rules from 
IIS proposed by us is still a new study topic. Tolerance relation 
is also compatible relation, in discrete mathematics, which is 
one of the most importantly fundamental and mathematical 
relations in mathematical formulation. Equivalence relation is 
compatible and tolerant relation. The collection of all maximal 
consistent blocks of a compatible relation is also called a 
complete covering in discrete mathematics and has much 
usefulness in many scientific fields. Tolerance relation is used 
to acquire knowledge in incomplete decision table in rough set 
instead of indiscernibility relation (is really an equivalence 
relation) in IDT. Compatible relation is of reflexivity and 
symmetry but not necessary transitivity. A compatible relation 
can be linked with an undirected graph. The nodes represent 
objects. Two objects are related if, and only if, there is an edge 
connecting them. Equivalence relation is nothing but a 
compatible relation satisfying transitivity. An equivalence 
relation R on U determines a partition of U, given by the 
equivalence classes modulo R, and this characterizes those 
coverings of a set that are families of classes of equivalence 
relation. But to arbitrary compatible relation, things are more 
complicated in this respect. Corresponding to a compatible 
relation a set of maximal consistent blocks, also called maximal 
compatible classes, which form an overlapped covering on the 
universe, can be uniquely defined. The collection of maximal 
consistent blocks is also called a complete covering in discrete 
mathematics. As a compatible relation, tolerance relation 
produces a set of tolerance classes which are regarded as a 
collection derived from a generator tolerant with every other 
element in the collection [8]. Tolerance classes usually 
construct an overlapped covering on the universe after 
eliminating repeated ones. But tolerance classes are eventually 
very different from maximal consistent blocks. In addition to 
maximal consistent blocks and tolerance classes of an object, 
join block, a union of some maximal consistent blocks 
containing the generator, and meet block, an intersection of 
some maximal consistent blocks containing the generator (also 
called compatibly kernel block or tolerantly kernel block in 
some literatures), are introduced by viewing maximal 
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consistent blocks as primitives. The later two blocks can also 
build an overlapped covering respectively [14]. 
Blocks or classes are similar to granules in granulation theory, 

which is a hot topic nowadays. The results got here can also be 
considered to be some real implementation of neighborhood 
system in concrete [4,5,7,15]. Upper and lower approximations 
and several properties are appropriately discussed.          
Through an example, the newly defined concept default 

definite rules acquired from incomplete decision tables is 
illustrated by analyzing maximal consistent blocks, join blocks 
and meet blocks. Optimality is also reached by benefiting from 
discernibility matrix and discernibility function. The finally 
obtained formation of default definite decision rules with some 
restrictions extremely show that they are newly proposed and 
significant to decision making in environment of incomplete 
decision table. 
In accordance with the rule mining approach, we suggest an 

incremental learning algorithm to update default definite 
decision rules. It is effective and does not need to deal with the 
entire IDT when new objects are appended one by one. 
The rest of the paper is organized as follows. Section 2 gives 

out some preliminary notations about blocks or classes based 
on maximal consistent blocks. Section 3 introduces upper and 
lower approximations and discusses some other properties. 
Section 4 demonstrates how to directly extract default definite 
rules from an IIS based on maximal consistent blocks. Another 
concept weak consistence is accordingly defined. Section 5 
continuously discovers default definite decision rules with 
some restrictions from the IDT based on join and meet blocks. 
The form of the rules represents our certain productive 
notation. It facilitates knowledge rules clarified. Section 6 
reduces the knowledge rules furthermore by using 
discernibility matrix and discernibility function. Section 7 
suggests an incremental algorithm for updating default definite 
decision rules in data appending to an incomplete decision 
table, not need to regenerate them again. Section 8 concludes 
the paper.   

II. PRELIMINARIES 

Definition 1.  An IDT or IIS is a quadruple ( , , , )S U A V f= , 

where U  is the finite non-empty universe, A  is the finite 
non-empty attribute set. A C D= ∪  and C D∩ = ∅ , where 
C  represents condition attribute set, D  represents decision 
attribute set. For any a A∈ , aV  represents the value domain 

of attribute a . a A aV V∈= ∪   is called attribute domain. 

{ |af f=  }a A∈  is called information function set. 

( )af x v=  means that the value of attribute a on object 

x U∈ is av V∈ .  If there at least one attribute a C∈  such 

that aV  contains null value, then S  is called an IDT or IIS in 
general, otherwise complete decision table or complete 
information system. ( ) { ( ) | }C af u f u a C= ∈  is also called 

the information vector of object u. Null value (applicable) is 
denoted by “*”. We always assume that ( )dV d D∈  does not 

contain null value “*”. Each d D∈  is a decision attribute. 
Without loss of generality, D={d} is always assumed and is 
called a single incomplete decision table ( IDT for short), 
otherwise, an multiple incomplete decision table. All can be 
called IIS.  

Let B C⊆ . The tolerance relation derived by B  is 
defined by: ( )SIM B {( , ) :u w U U a B= ∈ × ∀ ∈ , ( )af u  

( ) ( ) * ( ) *}a a af w f u f w= ∨ = ∨ = . 

 ( )BS u ={ w U∈ : ( , ) ( )u w SIM B∈ } is called a 

tolerance class[8] for u U∈  with respect to ( w.r.t. for short) 
B . In ( )BS u , each object is tolerant with u and is regarded as 

indiscernible with u. But two objects other than u  in ( )BS u  are 

not ensured to be tolerant mutually. / ( )U SIM B  

{ ( ) | }BS u u U= ∈  denotes the collection of all tolerance 

classes. Since tolerance relation ( )SIM B  is reflexive and 
symmetric, it is also a compatible relation. We use another 
symbol ( )TIM B  to substitute for ( )SIM B , 
ie, ( ) ( )TIM B SIM B= , but its complete covering is defined 

in this way:  / ( )U TIM B = {W ⊆ U : 2W ⊆ ( )TIM B , 

∀ u( u U u W∈ ∧ ∉ → (W ∪ {u})2 ( ))}TIM B⊄ , which is 

different from / ( )U SIM B  . Elements in / ( )U TIM B , 
called blocks or granules , are maximal consistent blocks or 
maximal compatible classes, not the same as tolerance classes in 

/ ( )U SIM B . Both may not form different partition of U , but 
always different overlapped covering. Two objects in a maximal 
consistent block always are compatible or tolerant 
w.r.t. ( )TIM B . Maximal consistent block is a compatible 
block which could never be included in another consistent block 
or compatible block. If an object is put into a maximal consistent 
block to which it does not belong, the maximum of its 
compatibility or consistence will be broken. Regarding all 
maximal consistent blocks in / ( )U TIM B as atomic blocks, 

we may define join block ( )BU u and meet block ( )BL u  of u 

respectively as follows: ( )BU u = W∪ ( / ( ),W U TIM B∈  

)u W∈ ; ( )BL u = (W W∩ / ( ),U TIM B∈ )u W∈ . 

Meanwhile we directly introduce block[1] ( )BK u =  

( )( ( ))B BS w u S w∩ ∈  referring to. ( )BU u  is a union of all 

maximal consistent blocks containing u. ( )BL u  is an 

intersection of them. ( )BL u  is called the compatible core[1] of u 

w.r.t. / ( )U TIM B , denoted by u< > , while ( )BK u , an 
intersection of all tolerance classes including u in 

/ ( )U SIM B , is called the tolerance core of u. 
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 { ( ) :BS u }u U∈  , { ( ) : }BU u u U∈ , / ( )U TIM B , 

{ ( ) :BL u }u U∈   and { ( ) : }BK u u U∈   form five different 

overlapped coverings on U respectively. They are called 
overlapped knowledge representation systems by domain 
experts. { ( ) | }BL u u U∈  is still a overlapped covering but 

maybe not a partition. Two objects in ( )BL u  are still 

compatible or consistent, but two objects in ( )BU u  are not. 

III. RELATIONS  
Although various blocks are introduced in section 2, we just 

list some results concerning join blocks, meet blocks and their 
relations for our main work in the present paper is to mine rules.  
Assume that ,B C u U⊆ ∈ . Then ( ) ( )B BU u S u= . 

( )BL u = ( )BK u u=< > . To the limitation of space, Proofs 
of them are omitted here. You can also refer to [14]. Now we 
discuss about upper and lower approximations and their 
properties under different knowledge representation systems 
mentioned above. At first, by lettingW U⊆ , B C⊆ , several 
upper and lower approximations are defined respectively as 
follows:  

( )BU W ={ u U∈ : ( )BU W W∩ ≠ ∅ }; 

( )BL W ={ u U∈ : ( )BL W W∩ ≠ ∅ }; 

( )BK W ={u U∈ : ( )BK W W∩ ≠ ∅ }; 

( )BE W ={ u U∈ : / ( )Y U TIM B∃ ∈ (u Y∈ ∧  

 ( ))Y W∩ ≠ ∅ }; 

( )BA W = { :u U∈ Y∀ ∈ / ( )U TIM B  (u Y∈ →   

( ))}Y W∩ ≠ ∅ ; 

( )BS W ={ u U∈ : ( )BS W W∩ ≠ ∅ }[ 8];  

( )BU W = { : ( ) }Bu U U u W∈ ⊆ ; 

( )BL W = { :u U∈  ( ) }BL u W⊆ ; 

( )BK W = { :u U∈  ( ) }BK u W⊆ ; 

( )BE W ={ u U∈ : Y∃ ∈ / ( )U TIM B (u Y∈ ∧  

 (Y ⊆ ))W }; 

( )BA W = { :u U Y∈ ∀ ∈ / ( )U TIM B (u Y∈ →   

( ))}Y W⊆ ; 

( )AS W ={ : ( ) }Bu U S u W∈ ⊆ [8]. 

Obviously, ( )BU W = ( )BS W , ( )BU W = ( )BS W ,  

( )BL W = ( )BK W , ( )BL W = ( )BK W . Other properties 
like in Pawlak’s work are listed below. 
Property  1.  Let W U⊆ , B C⊆ .  Then   

i) ( )BU W ( )BL W⊆ , ( )BU W ( )BL W⊆ ; 

ii) ( ) ( )B BL W U W⊆ , ( )BL W ( )BU W⊆ ; 

iii) ( ) ( ) ( )B BBS W E W A W⊆ ⊆ , 

( ) ( ) ( )B B BA W E W S W⊆ ⊆ . 

Property  2.  Let W U⊆ and , .P Q C⊆  Then  

i) ( ) ( )PPU W W U W⊆ ⊆ ; P Q⊂ ⇒  

( ( ) ( ))QPU W U W⊆ ( ( )BU W∧ ⊇ ( ))QU W ; 

ii) ( ) ( )P PL W W L W⊆ ⊆ ; P Q⊂ ⇒   

( ( ) ( ))P QL W L W⊆ ( ( )PL W∧ ( ))QL W⊇ ; 

iii) ( ) ( )PPK W W K W⊆ ⊆ ; P Q⊂ ⇒  

( ( ) ( ))QPK W K W⊆ ( ( )PK W∧ ⊇ ( ))QK W ; 

iv) ( ) ( )P PE W W E W⊆ ⊆ ; P Q⊂ ⇒  

 ( ( ) ( ))P QE W E W⊆ ( ( )PE W∧ ( ))QE W⊇ ;  

v) ( ) ( )P PA W W A W⊆ ⊆ ; P Q⊂ ⇒   

( ( ) ( ))P QA W A W⊆ ( ( )PA W∧ ( ))QA W⊇ . 

Proofs of properties 1 and 2 can be also performed similarly in 

[8,14] . Here we show some important results as theorems and 
give out their proofs as follows. 
Theorem  1.   ( )BA W = ( )BS W  for any W U⊆ and 

any B C⊆  

Proof.  By ( )BA W , for any ( )Bu A W∈  and arbitrary 

/ ( )Z U TIM B∈ , if  u Z∈ , then Z W⊆ . Thus 

/ ( )u Z Z U TIM B Z W∈ ∧ ∈∪ ⊆ .For / ( ) ( )u Z Z U TIM B BZ U u∈ ∧ ∈∪ =   

( )BS u= , we have ( )BS u W⊆ . This implies ( )Bu S W∈ . 

Therefore, ( ) ( )B BA W S W⊆  because u is any given in 

( )BA W .Conversely, we have ( )BS u W⊆  for any 

( )Bu S W∈ . Thus / ( )u Z Z U TIM B Z W∈ ∧ ∈∪ ⊆  for ( )BS u  

( )BU u= / ( )u Z Z U TIM B Z∈ ∧ ∈= ∪ .  This implies that if u Z∈ , 

then Z W⊆  for any / ( )Z U TIM B∈ . So ( )Bu A W∈ . 

Out of that u is an any given element in ( )BS W , we get 

( ) ( )BBS W A W⊆ .Summing up, ( )BA W =  ( )BS W . 

Theorem 2.  ( )BE W = ( )BS W for , .W U B C∀ ⊆ ∀ ⊆ .  

Proof.  On one hand, we prove ( ) ( )BBS W E W⊆ . For any 

( )Bu S W∈ . ( )BS u W∩ ≠ ∅ . Because ( )BS u = ( )BU u   

, / ( ) ,u Z Z U TIM B Z∈ ∈= ∪  thus we have ( )BS u W∩ =  

, / ( )( )u Z Z U TIM B Z W∈ ∈∪ ∩ , / ( ) ( )u Z Z U TIM B Z W∈ ∈= ∪ ∩ ≠  

∅ .  Therefore, there must exist a / ( )Z U TIM B∈ such that 

u Z∈ and Z W∩ ≠ ∅ . Thus ( )Bu E W∈ . So ( )BS W  
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( )BE W⊆  because  u is any given in ( )BS W . On the other 

hand, for any given ( )Bu E W∈ , there exists a 

/ ( )Z U TIM B∈  such that u Z∈  and Z W∩ ≠ ∅ . 

Furthermore, we easily have  , / ( ) ( )u Y Y U TIM B Y W∈ ∈∪ ∩ =  

, / ( )( ) ( ) ( )u Y Y U TIM B B BY W U u W S u W∈ ∈∪ ∩ = ∩ = ∩ ⊇  

Z W∩ ≠ ∅ . so ( )BS u W∩ ≠ ∅ . It means ( )Bu S W∈  

and ( ) ( )B BE W S W⊆  because u is any given in ( )BE W . 

Conclusively, ( )BE W = ( )BS W  holds. 

Theorem  3.  ( ) ( )B BA W S W⊆ for , .W U B C∀ ⊆ ∀ ⊆   

Proof.  Let ( )Bu A W∈ be any given. For any 

/ ( ),Z U TIM B∈  if u Z∈ , then Z W∩ ≠ ∅  by the 

definition of ( )BA W . Moreover, we have ( )BS u W∩  = 

, / ( ) , / ( )( ) ( )B u Y Y U TIM B u Y Y U TIM BU u W Y W∈ ∈ ∈ ∈∩ = ∪ ∩ = ∪

( )Y W Z W∩ ⊇ ∩ ≠ ∅ . That is, ( )BS u W∩ ≠ ∅ . Thus 

( )Bu S W∈ .Therefore, ( ) ( )B BA W S W⊆  because u is any 

given in ( )BA W . 

Theorem  4. ( ) ( )B BA W E W⊆  for ,W U B C∀ ⊆ ∀ ⊆ . 

Proof.  Let ( )Bu A W∈ be any given. If u Z∈  and 

/ ( )Z U TIM B∈ , then Z W⊆ . This means there exists a 

/ ( )Z U TIM B∈ such that Z W⊆  if / ( )Z U TIM B∈ . 

Thus ( )Bu E W∈ . Therefore, ( ) ( )B BA W E W⊆  because 

( )Bu A W∈  is any given. 

Theorem  5. ( ) ( )B BA W E W⊆  for , .W U B C∀ ⊆ ∀ ⊆   

Proof. Let ( )Bu A W∈  be any given. For each 

/ ( )Z U TIM B∈ , if u Z∈ , then Z W∩ ≠ ∅ . It implies 

that there exists a / ( )Z U TIM B∈  such that if u Z∈  then 

Z W∩ ≠ ∅ . Thus ( )Bu E W∈ . That is, ( )BA W ⊆   

( )BE W because u  in ( )BA W  is given arbitrarily. 

IV. MAXIMAL CONSISTENT BLOCK BASED RULE MINING 

Assume that ( , , , )S U A V f= is an IDT, { }A C d= ∪ , 

and B C⊆ . Attribute value pair (a, v) ( , )av V a B∈ ∈  is 
called a B-atomic property. Any B-atomic property or 
conjunction of different B-atomic properties is called a 
B-descriptor. Let t be a B-descriptor. If (a, v) is an atomic 
property occurring in t, then we denote (a, v) ∈ t. 

( ) { : ( , ) }aB t a B a v t= ∈ ∈  is an attribute set constructed by 
attributes occurring in t. An object having B-descriptor t is 
called a support of t .The set of all supports of t is denoted 

by || ||t , ie, || || { :t x U= ∈  ( ), ( , ) }v B x a v t∈ ∀ ∈ , where 

( )B x =  { ( ) : }a x a B∈ . Obviously, if t and s are two atomic 

properties,   then   || || || || || ||t s t s∧ = ∩ ,   and   || ||t s∨ =  

|| || || ||t s∪ . Let t and s be two descriptors. If for all (a, v)∈t, 
we have (a, v)∈s, that is, t is constructed from a subset of 
atomic properties occurring in s, then we say t is coarser than s 
or s is finer than t and is denoted by tf s or sp t.  If t is 
constructed from a proper subset of atomic properties occurring 
in s, then we say t is proper coarser than s and is denoted by 
tf s or sp t. It is easy to prove that tf s ⇒  || || || ||t s⊇ ; 

tf s ⇔  || || || ||t s⊃ ; 

Let B ⊆ C. We denote ( ) { :DES B t t=  is B-descriptor and 

|| || }t ≠ ∅ . For any t ∈  DES(B), if B(t) = B, then t is called a 
full B-descriptor. When t is a full B-descriptor, we denote 

( , )( )a B a a at a v v V∈= ∧ ∈ , || || || ( , )( ) ||a B a a at a v v V∈= ∧ ∈

{ : ( ) ( ) *,au U a u v a u= ∈ = ∨ = }a B∈ . For u∈U, if for 
any a∈B, a(u)=va or a(u)=*, then we call u compatible with 
descriptor ( , )( )a B a a at a v v V∈= ∧ ∈ . || || || ( , )a B at a v∈= ∧  

( ) ||a av V∈  represents all objects compatible with t or 

support t . We also denote ( )FDES B { ( ) :t DES B= ∈ t is 

a full B-descriptor}   and  ( )BFDES u  { ( ) :t FDES B= ∈  

|| ||}x t∈  for B C⊆  and u∈U.  

For any t ∈  DES(C), let us define a function : 2 dVU∂ →  as 
follows: ( ) { ( ) :u d z∂ =  || ||,z t∈  || ||}u t∈ , which is called 

a generalized decision of u in the incomplete IDT, where 2 dV  
is the power set of dV . Any (d, w), w ∈  ∂(u), will be referred 
to a generalized decision descriptor of u. 
In IDS, IND({d})=SIM({d})= TIM({d}) because there is no 

missing value to decision attribute. Thus, U/IND({d})= 

{ }{ ( ) : }dI u u U∈ = / ({ })U SIM d = { }{ ( ) | }dS u u U∈  

= / ({ })U TIM d  and they form an identical partition on U, 

where { }( )dI u  represent an equivalence class containing u and 

{ }( )dS u is a similarity class containing u and 

{ } { }( ) ( )d dS u I u=  for decision attribute d and 

{ } { }|{ ( ) | ( ) ( )} | 1d dd z z S u I u∈ = =  for each .u U∈   

Let / ( )K U TIM C∈ . 1 2( ) ( , , , )nDESV K v v v= L , 

where ( )i iv a u=  if there exists u K∈  such that ( ) *ia u ≠ , 

or *iv =  if for any u K∈ , ( ) *(1 )ia u i n= ≤ ≤ . 

( )DESV K  is called a optimal descriptor of K . 

Let ( ) { : , . . ( ) *}i iC K a C u K s t a u= ∈ ∃ ∈ ≠ . If ia ∈  

( )C K ,  then |{ ( ) :ia u u K∈ ∧  ( ) *} | 1ia u ≠ = .  So we can 
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denote ( )ia K = { ( ) :ia u u K∈ ∧ ( ) *}i ia u v≠ = . 

( )|| ( , ) ||
ia C K i ia v∈∧  K= . If B ⊆ C and / ( )K U TIM B∈ , 

then ( ) { : ( ( ) *)}B K a B u K a u= ∈ ∃ ∈ ≠ , which is 

parallel similar to the definition of ( )C K  . 

Definition 1. Let ( , { }, , )S U C d V f= ∪ be an IDT, 

/ ( )K U TIM C∈ . If there exists a iD ∈  / ({ })U IND d  

/ ({ }) / ({ })U SIM d U TIM d= = such that iK D⊆ ,  

then K  is consistent, otherwise inconsistent. If 
|| || || ( , )( ) ||a B a a at a v v V∈= ∧ ∈ ≠ ∅  and there exits 

a / ({ })jD U IND d∈  such that || || || ( , )a B at a v∈= ∧  

( ) ||a av V∈ ⊆ jD ,  then ( , ) ( , )a B aa v d j∈∧ →  will be a 

certain decision rule without contradiction to its description 
condition and decision. 
Definition 2.  If K  is consistent ( iK D⊆ ) and there exists 

u K∈ , such that ( ) ( )Cf u C K= , then ( ) ( , )
ia C K i ia v∈∧  

( , )d i→  is a default definite decision rule. 

Definition 3.  If K  is consistent ( iK D⊆ ) and for 

any u K∈ , such that ( ) ( )Cf u C K≠ , then ( ) ( ,
ia C K ia∈∧  

) ( , )iv d i→  also makes default definite decision rule without 
violation. 
Now that ( ) ( )B BL u K u u= =< > , we can define a weak 

consistence in IDT as follows. 
Definition 4.  If for any { }, ( ) ( ) ( )B B du L u K u S u= ⊆  

{ }( )dI u= , then the IDT is weakly consistent, otherwise, not 

weakly consistent. 
The meaning of the weak consistence in this way is closely 

approximate to simulate real world, because we prefer 
assuming that observed objects having similar attribute values 
must have unique decision, other interfering attribute values 
can be regarded as noises. So weak consistence is a 
fundamental  assumption to an IDT. One can also see what it 
really represents through reading our following example.  
Lemma   If ( , { }, , )S U C d V f= ∪  is consistent, then S  

is also weakly consistent. But S  may not be consistent if S  is 
weakly consistent. 
Example 1.   An incomplete decision table is shown in Table 

1. According to the discussions in the previous sections in the 
above, we can first calculate all maximal consistent blocks w.r.t 
C and decision classes w.r.t. d as follows. 
U/TIM(C)={K1,K2,K3,K4,K5,K6,K7}, where K1={u1, u2},K2= 

{u3, u5}, K3={u4, u7, u9}, K4={u5, u6}, K5={u11}, K6={u8, u9}, 
K7={u4, u7, u10}. U/IND({d})={D0, D1, D2}, where D0={u3, u5, 
u6, u10, u11}, D1={u1, u2, u4, u7 }, D2={u8, u9}.Then we can mine 
default definite rules as knowledge rules in the following. 

 
 

TABLE Ⅰ 
AN INCOMPLETE DECISION TABLE 

U a b c e f d 

u1 1 0 * 2 0 1 
u2 1 0 1 2 0 1 
u3 0 1 2 * 2 0 
u4 1 2 * 1 1 1 
u5 0 * 2 0 2 0 
u6 0 2 2 0 * 0 
u7 1 * * 1 * 1 
u8 1 2 1 2 1 2 
u9 * * 1 * 1 2 
u10 * 2 0 * 1 0 
u11 2 1 1 0 0 0 

 
 (1) Since 1 1K D⊆ , DESV(K1)=(1,0,1,2,0), 2( )Cf u  = 

DESV(K1),(1,0,1,2,0) → 1, ie, ( ,1) ( ,0)a b∧ ∧ ( ,1)c ∧  

( , 2) ( ,0) ( ,1)e f d∧ → is default definite decision rule. 

(2) For 2 3{ ,K u=  5 0}u D⊆ ,DESV(K2)=(0,1,2,0,2), but 

neither of 3( )Cf u  and 5( )Cf u  equals to DESV(K2). Thus 

(0,1,2,0,2) → 0,ie, ( ,0) ( ,1) ( , 2) ( ,0) ( , 2)a b c e f∧ ∧ ∧ ∧  

( ,0)d→  is a default definite decision rule without violation. 

(3) Because 4 0K D⊆ ,DESV(K4)=(0,2,2,0,2) and neither of 

5( )Cf u  and 6( )Cf u  equals to DESV(K4), Thus 

(0,2,2,0,2) → 0,ie, ( ,0) ( , 2) ( , 2) ( ,0) ( , 2)a b c e f∧ ∧ ∧ ∧  

( ,0)d→ is also a default definite rule without violation. 

(4) From 5 0K D⊆ ,DESV(K5)=(2,1,1,0,0) and 11( )Cf u  

=DESV(K5), we obtain (2,1,1,0,0) → 0, ie, ( , 2)a ∧   

( ,1) ( ,1) ( ,0) ( ,0) ( ,0)b c e f d∧ ∧ ∧ → is a default definite 
decision rule. 
(5) Because 6 2K D⊆ ,DESV(K6)=(1,2,1,2,1) and 

8( )Cf u =DESV(K6), we obtain (1,2,1,2,1) → 2, ie, ( ,1)a ∧  

( , 2) ( ,1) ( , 2) ( ,1) ( , 2)b c e f d∧ ∧ ∧ → , a default definite 
decision rule. 
We call all default definite decision rules certainly or without 

violation simply default definite rules. 

V. JOIN AND MEET BLOCK BASED DEFAULT DEFINITE 
DECISION RULE ACQUISITION 

We are going to keep analyzing Table 1 and intending to find 
some other rules with the view points of join block and meet 
block in section 2 and 3. 

Example 2  Continue acquiring rules from Table 1. 
(1) For any iD (i=0,1,2), 3 i 7 i D  ,  D  K K⊄ ⊄ . But 

3 7 4 7{ , }K K u u∩ = 1D⊆ . DESV( 3 7K K∩ ) =(1,2,*,1,1), 

so there exists a u in 3K  and a w in 7K  such that 

( ) *, ( ) *,c u c w≠ ≠ and ( ) ( )c u c w≠  according to that  
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attribute c takes * in DESV( 3 7K K∩ ), ie, 

c(DESV( 3 7K K∩ ))=*. In this case, we get a strictly definite 

decision rule: (1, 2, *, 1, 1) → 1, ie, ( ,1) ( , 2)a b∧ ∧  

( ,*) ( ,1) ( ,1) ( ,1)c e f d∧ ∧ → . In brief form, it is: 

( ,1) ( , 2) ( ,1) ( ,1) ( ,1)a b e f d∧ ∧ ∧ → , but for ,u U∀ ∈  

( ) {0,1}c u ∉ . Here , ( ) {0,1}u U c u∀ ∈ ∉ . It is because 

( ,1)c  3 3 7' ( \ ( ))t FDESV K K K∈ ∈ ∩ and ( ,0) ''c t∈ ∈ 

7 3 7( \ ( ))FDESV K K K∩ preclude to have the same 

decision result. c(DESV( 3 7K K∩ ))=* only means that 

attribute c can not take any value in 3 3 7(( \ ( ))c K K K∩ ∪  

7 3 7( \ ( ))) {0,1}K K K∩ = . Otherwise, decision attribute 
will not take the same decision value. So we call it a restrict 
default definite rule. The restrict demands that attribute c can 
not take value 1 or 0 intuitively, otherwise the decision result 
will be different under the same assumption of other attributes 
taking similar attribute values to that in DESV( 3 7K K∩ ). We 
can explain that noise for attribute c is sensible and decision is 
also sensible to attribute c. We also think of that this restrict 
default definite rule is much better than a possible one in 
practice. Although it did not discover before and is a partly 
restricted rule, however, it is without dilemma in a definite 
schema. Possible rule only give a possibility but without clear 
pattern. 
(2) From 3 i 6 2 D  ,  D  K K⊄ ⊆ , 3 6 9 2{ }K K u D∩ = ⊆  , 

we can obtain a meet block based rule 3 6( )DESV K K∩  

2( )DESV D→ . That is, 9 9({ }) ( )CDESV u f u= →   

2( ) 2,DESV D =  ie, (*,*,1,*,1) 2→ . (a,*) (b,*)∧ ∧  

(c,1) (e,*) (f,1) 2∧ ∧ → . Thus (c,1) (f,1)∧ →  2 .  But 
we should analyze three *’s in the rule to see whether there is a 
restriction on the related attribute or not.  For 
(a,*) , 3 6( ( )) ( ( )) 1a DESV K a DESV K= = , therefore a 
might be omitted because it has no conflict taking 
values 3 6( ), ( )a K a K at the same time. Meanwhile, for (b,*) , 

3( ( ))b DESV K  6( ( )) 2b DESV K= = , therefore b might 

be also omitted. In addition, for (e,*) , 3( ( ))e DESV K 1,=  

6( ( )) 2e DESV K = . When 3( ( ))e DESV K  1=  in 3K , 

d=1; when 6( ( )) 2e DESV K = , d=2 , which is compatible 

to (c,1) (f,1) 2.∧ →  So from 6K =  8 9 2{ , }u u D⊆  , we 

have that rule (c,1) (f,1)∧ 2→  should be imposed a 

restriction ( ) 1e u ≠ for any u .Thus the final default definite 

decision rule acquired is: (c,1) (f,1) 2∧ → , and ( ) 1e u ≠  
for any u . 

(3) From 2 4 5 0{ }K K u D∩ = ⊆  and furthermore even 

2 4 3 5 6 0{ , , }K K u u u D∪ = ⊆ , we see 2( )DESV K  =(0,1, 

2,0,2), 4( )DESV K =(0,2,2,0,2). 2 4( )DESV K K∩ =   

5({ })DESV u =(0,*,2,0,2). According to 2(DESV K ∩  

4 )K = (0,*,2,0,2), we may get a default definite decision rule: 

(0,*,2,0,2) → 0, ie, ( ,0) ( ,*) ( , 2) ( ,0)a b c e∧ ∧ ∧ ∧  

( , 2)f → ( ,0)d . Then  ( ,0) ( , 2) ( ,0) ( ,2)a c e f∧ ∧ ∧  

( ,0)d→  is the further optimal form.  The attribute b can take 

any value including 1 or 2, because 2 4K K∪ =  

3 5 6 0{ , , }u u u D⊆ , 2 2 4 0\ ( )K K K D∩ ⊆  and 4 2\ (K K  

4 0)K D∩ ⊆ as well. So the final rule mined is: 

( ,0) ( , 2) ( ,0) ( , 2) ( ,0)a c e f d∧ ∧ ∧ → .We can say that  
its decision is stable , not sensible to values of b. These are three 
extreme situations for incomplete decision tables. These three 
extreme cases also give a heuristics for us to derive decision 
rules from incomplete decision tables on the base of different 
levels of granules by granulation theory. Mining rules based on 
join and meet blocks is just an example. But we obliged to see 
the related rules have to be dug at a high difficulty on other 
blocks or granules. That is beyond our discussion scope. We 
can induce some principles concerning only two maximal 
consistent blocks.  
(1) Let , / ( ),i jK K U TIM C∈ i jK K≠  and i jK K∩  

≠ ∅ . If there exists / ({ })rD U IND d∈  such that 

i rK D⊆ and j rK D⊆ , then we must have an a C∈  such 

that ( ,*) ( ),i ja DESV K K∈ ∩  ( ,*)a ∉ ( \i iDESV K K    

),jK∩ ( ,*) ( \ )j i ja DESV K K K∉ ∩ . If ( , ') 'a v t∈  

( \i iC K K∈ ),jK∩ ( , '') ''a v t∈  ( jC K∈  \ )i jK K∩ , 

where ' *, '' *v v≠ ≠  and ' ''v v≠ , then we can form 

specialized rules with the same decision r : one is with ( , ')a v  

in it, another is with ( , '')a v  in it, and even another is with 

( ,*)a  in it. So they can be unified to form a default definite 

rule based on ( )i j rDESV K K D∩ →  without a  in it. 

That is, a  can be omitted from the rule. 
(2) Let , / ( ),i jK K U TIM C∈ i jK K≠ and iK ∩  

jK ≠ ∅ . If there exists / ({ })rD U IND d∈  such 

that i rK D⊆ but j rK D⊄ , then we must have some a C∈  

such that ( ,*) ( ),i ja DESV K K∈ ∩ and ( ,*)a ∉  

( \ )j i jDESV K K K∩ . If ( ,*) 'a t∈ ( iC K∈ ),jK∩   

( , '') '' ( \ )j i ja v t C K K K∈ ∈ ∩  and ( '')d t r≠  , where 

'' *v ≠ , then we can form a specialized rule based on 
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( )i j rDESV K K D∩ →  with a restriction that a  can not 

take value ''v  and without a  in the rule. 
(3)Let , / ( )i jK K U TIM C∈ i jK K≠ and i jK K∩ ≠ ∅ . 

If for any / ({ })rD U IND d∈  such that i rK D⊄ and 

j rK D⊄ ,but there is a / ({ })lD U IND d∈  such that 

i j lK K D∩ ⊆ , then we must have some a C∈ such that 

( ,*) ( ),i ja DESV K K∈ ∩ ( , ') ' ( ia v t DESV K∈ ∈ \ iK
),jK∩ ( , '')a v ''t∈ ( \ )j i jDESV K K K∈ ∩ , where 

' *, '' *v v≠ ≠  and ' ''v v≠ such that || ' || lt D∩ = ∅  and 

|| '' || lt D∩ = ∅ . In this case, we can obtain also another 
default definite rule with decision l without attribute a in it and 
a is forced not to take values in{ ', ''}v v . 

VI. OPTIMIZATION BY DISCERNIBILITY MATRIX AND 
DISCERNIBILITY FUNCTION 

Definition 6.  Let B C⊆  and ( , ) ( , )a B aa v d j∈∧ →   be a 

certainly existed and definite decision rule. If 'B B⊆  and 

' ( , ) ( , )a B aa v d j∈∧ →   is still a certainly existed and definite 

decision, then ' ( , ) ( , )a B aa v d j∈∧ →  is called better 

than ( , ) ( , )a B aa v d j∈∧ → . If for any '' 'B B⊂ , 

'' ( , ) ( , )a B aa v d j∈∧ →  is not a certainly existed and definite 

decision, then ' ( , ) ( , )a B aa v d j∈∧ →  is called a optimal 

decision rule and 'B  is called a reduct of 
( , ) ( , )a B aa v d j∈∧ → . 

Definition 7. Let ( , { }, , )S U C d V f= ∪  be an  IDT, K ∈ 

/ ( )U TIM C , / ({ })iD U IND d∈ / ({ })U TIM d=  and 

iK D⊆ . If B C⊆  is a minimal attribute subset and 

satisfies: / ( ),BK U TIM B∈ BK K⊇ B
iK D⇒ ⊆ , then 

B is called a relative reduction of C with respect to K. 
If B is called a relative reduction of C with respect to K, then 

( , ) ( , )
ia B i ia v d i∈∧ →  is an optimal rule to ( ) ( ,

ia C K ia∈∧  

) ( , )iv d i→ . 

Let ( , ) { | ,* ( ) ( ) *}u w a a C a u a wα = ∈ ≠ ≠ ≠ .If ( ,uα  

)w = ∅ , u and w are not c-discernible; if ( , )c u wα∈ , then 
u and w are c-discernible, or you can say that one can use c to 
discern  u and w. ( ( , ))n nM u wα ×=  is the discernible matrix 

of system S, where 1 2{ , ,..., }nU u u u= . ( , )u wα∨  
represents the Boolean disjunction of all attributes in 

( , )u wα . If ( , )u wα = ∅ , then ( , ) 1u wα∨ = . 

Theorem 6. Let ( , { }, , )S U C d V f= ∪  be an incomplete 

decision table  / ( )K U TIM C∈ , / ({ })iD U IND d∈  

/ ({ })U TIM d= , iK D⊆ , B C⊆ . Then for BK∀ ∈ 

/ ( ),U TIM B ,B B
iK K K D⊇ ⊆  if and only if, for any 

\ ,iu U D∈   w K∃ ∈ such that ( , )u w Bα ∩ ≠ ∅ . 

Proof. Suppose / ( ), ,B BK U TIM B K K∀ ∈ ⊇  BK ⊆  

iD .  If \ iu U D∃ ∈  such that for any ,w K∈  ( , )u wα ∩  

B = ∅ , then ( , ) ( )u w SIM B∈ . Since w is arbitrary in K, we 

have 2( { }) ( )K u TIM B∪ ⊆ . Extending { }K u∪  to 

maximal, we get / ( )BK U TIM B∈  such that { }K u∪  
BK⊆ . From the given condition and BK K⊆ ,  we obtain 

B
iK D⊆ . Therefore, iu D∈ . This contradicts u ∈  \ iU D .  

So ( , )u w Bα ∩ = ∅  is void. It proves that for any u ∈   

\ ,iU D  w K∃ ∈  such that ( , )u w Bα ∩ ≠ ∅ . 

Conversely, assume that for any ,iu U D∈ −  w K∃ ∈ such 

that ( , )u w Bα ∩ ≠ ∅ . If there exists some 
BK ∈ / ( )U TIM B  such that BK K⊆  but B

iK D⊄ , then 

\B
iu K D∃ ∈  holds. From \B

iu K D∈  and the given 

condition, w K∃ ∈  such that ( , )u w Bα ∩ ≠ ∅ . However, 

we must have ( , ) ( )u w TIM B∈  from \B
iu K D∈ , 

w K∈  and BK K⊆ , and moreover ( , )u w Bα ∩ = ∅ . 

That is a contradiction. So for / ( ),BK U TIM B∀ ∈  

,B B
iK K K D⊇ ⊆ . 

Definition 8. Let / ( ), iK U TIM C K D∈ ⊆ . ( , )iK DΔ =   

\ ( ( ( , )))
iu U D w K u wα∈ ∈∧ ∨ ∨ is called a discernible function of 

K  with respect to iD . 
Theorem 7.  Any attribute subset corresponding to each 

conjunction in its minimal disjunction normal form of ( )KΔ  

forms a relative reduct of K .The proof of Theorem 7 can be 
performed by using Boolean inference theory and the former 
theorem according to the definition, similar to that in [15]. 
Example 3.  All optimal certain decision rules from 

incomplete decision table in Table 1. 
At first, we form the discernible matrix M  as in Fig 1. Then, 

from 1 1K D⊆ , 2 0K D⊆ , 4 0K D⊆ , 5 0K D⊆ , 6K ⊆  

2D ,  we calculate the reduced rules according to discernible 
matrix respectively as follows. 
(1) For 1 1K D⊆ , 1 1 2 1 1 2 4 7{ , }, { , , , }K u u D u u u u= = , we 

have 1 3 5 6 8 9 10 11\ { , , , , , , }U D u u u u u u u= . 1( )KΔ =  
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11\ ( ( ( , ))) ( ) ( ) ( ).u U D w K u w a f b f e fα∈ ∈∧ ∨ ∨ = ∧ ∨ ∧ ∨ ∧

Relative reducts for 1K  are:  { , },{ , },{ , }a f b f e f . So, 
optimal rules to default definite rule (a certain rule) 
( ,1) ( ,0) ( ,1) ( , 2) ( ,0) ( ,1)a b c e f d∧ ∧ ∧ ∧ →  are: 

 ( ,1) ( ,0) ( ,1)a f d∧ → ; ( ,0) ( ,0) ( ,1)b f d∧ → ; 

  ( , 2) ( ,0) ( ,1)e f d∧ → . 

{ } { }
{ } { } { }
{ } { } { }
{ } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { } { } { }
{ } { } { } { } { }
{ } { } { } { } { } { } { }
{ } { } { } { } { } {

abf abcf
bef bef abf
aef aef aef
abe abce b ae
e e a ae ae
bf b abcf e acef ace e
f f cf cf c

bf bcf bcf cf c c c
abe abe abcf abef acf abc

∅
∅ ∅

∅
∅

∅ ∅
∅ ∅

∅ ∅
∅

∅ ∅ ∅ ∅
∅ ∅ ∅

} { } { } { } { }ae abef f bcf

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∅⎣ ⎦
 
 
 (2) For 2 0K D⊆ , K2={u3, u5}, D0={u3, u5, u6, u10, 

u11}, 0 1 2 4 7 8 9\ { , , , , , }U D u u u u u u= . So we have 2( )KΔ =  

0 2\ ( ( ( , ))) ( ) ( ) ( )u U D w K u w a c a f c eα∈ ∈∧ ∨ ∨ = ∧ ∨ ∧ ∨ ∧

( )e f∨ ∧ .  Relative reducts for 2K  are: { , }a c , { , }a f , 

{ , }c e , { , }e f . Optimal rules to the default definite rule (a 

default rule) ( ,0) ( ,1) ( , 2) ( ,0) ( , 2)a b c e f∧ ∧ ∧ ∧  

( ,0)d→  are:  

( ,0) ( , 2) ( ,0)a c d∧ → ; ( ,0) ( , 2) ( ,0)a f d∧ → ;  

( , 2) ( ,0) ( ,0)c e d∧ → ; ( ,0) ( , 2) ( ,0)e f d∧ → . 

(3) For 4 0K D⊆ , K4={u5, u6}, D0={u3, u5, u6, u10, u11}.  So 

4( )KΔ =
0 4\ ( ( ( , )))u U D w K u wα∈ ∈∧ ∨ ∨ = ( )a c∧ ∨ (a ∧   

)f ( ) ( )c e e f∨ ∧ ∨ ∧ . Relative reducts for 4K  are: 

{ , }a c , { , }a f , { , }c e , { , }e f . Optimal rules to the default 

definite rule (a default rule) ( ,0) ( , 2) ( , 2) ( ,0)a b c e∧ ∧ ∧  

( , 2) ( ,0)f d∧ →  are: 

 ( ,0) ( , 2) ( ,0)a c d∧ → ; ( ,0) ( , 2) ( ,0)a f d∧ → ; 

 ( , 2) ( ,0) ( ,0)c e d∧ → ; ( ,0) ( ,2) ( ,0)e f d∧ → . 

(4) For 5 0K D⊆ , K5={u11}, D0={u3, u5, u6, u10, u11}, So 

0 55 \( ) ( ( ( , )))u U D w KK u wα∈ ∈Δ = ∧ ∨ ∨ ( )a f= ∧ ∨ (e ∧  

)f . Relative reducts are: { , }a f , { , }e f . Optimal rules for 
default definite rule (a certainly existed definite decision rule) 
( , 2) ( ,1) ( ,1) ( ,0) ( ,0) ( ,0)a b c e f d∧ ∧ ∧ ∧ →  are: 

 ( , 2) ( ,0) ( ,0)a f d∧ → ; ( ,0) ( ,0) ( ,0)e f d∧ → . 

(5) For 6 2K D⊆ , K6={u8, u9}, D2={u8, u9}, 2\U D =  

1 2 3 4 5 7 10 11{ , , , , , , , }u u u u u u u u . Thus we have 6( )KΔ =  

2 6\ ( ( ( , )))u U D w K u wα∈ ∈∧ ∨ ∨ ( ) ( ) { , }b c c f b c= ∧ ∨ ∧ =  

{ , }c f∨ . Relative reduct for 6K  are: { , },{ , }b c c f . 
Optimal rulesto the default definite rule (a certain rule) 
( ,1) ( , 2) ( ,1) ( , 2) ( ,1) ( , 2)a b c e f d∧ ∧ ∧ ∧ → are: 

( , 2) ( ,1) ( , 2)b c d∧ → ; ( ,1) ( ,1) ( , 2)c f d∧ → . 
  Similarly, we can use discernibility function to find relative 

reducts of rules derived by join and meet blocks. 
(6) For 3 7 4 7{ , }K K u u∩ = 1D⊆ , we can also calculate 

discernibility function: 3 7( )K KΔ ∩ =  
1\u U D∈∧

3 7
( w K K∈ ∩∨   

( ( , )))u wα∨ { , } { , } { , }a e b e e f= ∨ ∨ . Thus optimal 
default definite rule (also a certainly decision rule) 
( ,1) ( , 2) ( ,1) ( ,1) ( ,1)a b e f d∧ ∧ ∧ →  and ,u U∀ ∈  

( ) \{0,1}cc u V∈  are: ( ,1) ( ,1) ( ,1)a e d∧ → ; ( , 2)b ∧  

( ,1) ( ,1)e d→ ; ( ,1) ( ,1) ( ,1)e f d∧ → . Note that for 

,u U∀ ∈  ( ) \{0,1}cc u V∈ . 

(7)  Similarly, 3 6 9 2{ }K K u D∩ = ⊆  we can compute the 

discernibility function 3 6( )K KΔ ∩ =  
2 3 6\ ( (u U D w K K∈ ∈ ∩∧ ∨  

( , )))u w c fα∨ = ∧ .  So the rule: (c,1) (f,1) 2∧ →  with 
( ) 1e u ≠ for any u  does not required to reduced. 

(8) For 2 4 3 5 6 0{ , , }K K u u u D∪ = ⊆ , the discernibility 

function is computed 2 4( )K KΔ ∪ =  
0\u U D∈∧

2 4
( w K K∈ ∪∨  

(∨ ( , ))) { , } { , } { , } { , }u w a c a f c e e fα = ∨ ∨ ∨ . Thus  
optimal rules for default definite rule (a default rule) 
( ,0) ( , 2) ( ,0) ( , 2) ( ,0)a c e f d∧ ∧ ∧ →  are:  

( ,0) ( , 2) ( ,0)a c d∧ → ; ( ,0) ( , 2) ( ,0)a f d∧ → ; 

 ( , 2) ( ,0) ( ,0)c e d∧ → ; ( ,0) ( , 2) ( ,0)e f d∧ → . 
Summarizing the above optimal default rules, we can 

eliminate repeat ones and remain useful ones. 

VII. AN INCREMENTAL ALGORITHM TO MINING DEFAULT 
DEFINITE DECISION RULES 

With new objects appending to the IDT, the former default 
definite rules have to be updated to suit for a new data 
circumstance. When new objects are added to an IDT, it is an 
efficient approach to accept modifying the existing rules or few 
new rules as current rules, instead of regenerating them wholly. 
In this section, an incrementally updating present default 

definite decision rule algorithm is presented. 
Let ( 1,2, , )iK i n= L be all maximal consistent blocks of 

incomplete decision table S , ( 1, 2, , )jD j m= L be all its 

decision classes. When a new object , at least one of its attribute 
values is different from the corresponding attribute value of 

Fig. 1  Discernibility Matrix of Table 1 
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each object, is appended to the IDT, the algorithm is 
implemented by distinguishing the following cases: 
Case 1. ( 1, 2, , )iu K i n∉ = L  and ( 1,2,ju D j∉ =  

, )mL . A new maximal consistent block 1nK + and a new 

decision class 1mD + are constituted by u . 1nK + 1mD +=  

{ }u= . 1 1n mK D+ +⊆ . Create a default definite decision rule 

1( )nDESV K + 1( )mDESV D +→ , ie, ( ) ( )Cf u d u→ . The 
original set of remains unchangeable. 
Case 2.  ( 1,2, , )iu K i n∉ = L  and ( {1,2,ju D j∈ ∈  

, })mL . A new maximal consistent block 1 { }nK u+ =  is 
formed. Construct a new default definite decision rule: 

1( ) ( )n jDESV K DESV D+ → ,ie, ( ) ( )C jf x DESV D→  

( )d u= , ie , ( ) ( )Cf u d u→  because 1 { }n jK u D+ = ⊆  and 

we assumed that missing value is not included at decision 
attribute, and ( ) ( )jDESV D d u= . 

Case 3. 
1 2 1 2, , , ( , , , {1,2, , },

ri i i ru K K K i i i n∈ ∈L L L  

1)r ≥  and ( {1,2, , })ju D j m∈ ∈ L . (Note: 1 2, ,K K  

, nKL  only form a overlapped covering , not a partition; 

( 1,2, , )
li

u K l r∈ = L means it is compatible with each 

object in 
li

K ). We have to check whether 

{ }
li jK u D∪ ⊆ ( 1,2, , )l r= L . If it is hold, we build a 

new rule ( { })
li

DESV K u j∪ → , add it to the new rule set. 

If it is not hold, we do not build such kind of rules. Then 
consider meet block based default definite decision rule. 
Obviously, ( , , {1,2, , })

l ki iK K k l k l r∩ ≠ ∅ ≠ ∈ L , so 

rules based on meet blocks 
l ki iK K∩ can be created 

depending on whether or not 
l ki iK K∩ ⊆ jD . Other rules in 

the original rule set remain unchanged. 
Case 4. 

1 2 1 2, , , ( , , , {1,2,
ri i i ru K K K i i i∈ ∈L L ,L   

}, 1)n r ≥  and ( {1,2, , })ju D j m∉ ∈ L . A new decision 

class 1mD +  is constituted with only u in it. If  r=1, nothing has 

to be done because 1 1mK D +⊄ and other else c situations were 
considered before. If  r>1, we have to check whether or not for 
any , (1 , )p q p qi i i i r≤ ≤ , 

p qi iK K∩  1 { }mD u+⊆ = . If not, 

nothing has to be done. If it holds for example ,
p qi iK K  such 

that 
p qi i mK K D∩ ⊆ , really speaking, 1p qi i mK K D +∩ =  

for 1mD + is a singleton subset, then we have to add a new 

default definite decision rule ( )
p qi iDESV K K∩ =  

1( ) ( )C mf u DESV D +→ , ie, ( ) ( )Cf u d u→ . All other 
default definite rules in the original rule set need not updated. 
After appending an object into the IDT and finishing rules 

updating, we need to add a new row to the discernibility matrix 
because a lower triangle matrix is constructed by us and it is for 
continuing appending objects later. 
 

TABLE II 
 A  NEW OBJECT TO BE  INSERTED 
 a b c e f d 
u * 2 1 * 1 1 

 
Example 4.  Let a new object u shown in Table 2 is appended 

to the IDT in Table 1. We can see, 4u  and u  are compatible, 

9u and u  are also compatible, 7u  and u  are also compatible, 

8u  and u  are also compatible. So 3 4 7 9{ , , }K u u u=  has to 

be updated to 3 3 { }K K u′ = ∪ 4 7{ , ,u u= 9 , }u u , 6K =  

8 9{ , }u u  is updated by 6 6 8 9{ } { , , }K K u u u u′ = ∪ = . u ∈  

1D  because ( ) 1d u = . So 1D  has to be updated by 

1 1 1 2 4 7{ } { , , , , }D D u u u u u u′ = ∪ = . It belongs to the Case 

3. 3 3( ) ( )DESV K DESV K′ = =(1,2,1,1,1), 6( )DESV K ′ =  

6( )DESV K = (1,2,1,2,1).  
TABLE III 

 COMPATIBLE OBJECTS  

U a b c e f d 

u * 2 1 * 1 1 
u4 1 2 * 1 1 1 
u7 1 * * 1 * 1 
u8 1 2 1 2 1 2 
u9 * * 1 * 1 2 

 
In the following, we consider which rules have to be changed. 

According to meet block and 3 7 1K K D∩ ⊆  in the original, 

we got a rule. Now 3 7 3 7 4 7 1{ , }K K K K u u D′ ∩ = ∩ = ⊆  is 

still hold and 3 7( )DESV K K′ ∩ 3(DESV K=  7 )K∩ . So 

the rule by meet block 3 7K K′ ∩  needs not to be updated. In 

the original rule generation, 6 2 8 9{ , }K D u u⊆ = , but now 

6K ′ =  8 9 2{ , , }u u u D⊄ . Therefore the original default definite 

rule 6 2( ) ( ) 2DESV K DESV D→ =  has to be removed 

because there is a conflict between 2( ) ( , 2)DESV D d=  and 

( ) 1d u = . On the other hand,  6 3K K′ ′∩   9{ , } ,u u= ≠ ∅  

but 9{ , }u u  ⊄  1 0 2, ,D D D′ . So we do not need to use it to 
produce a meet block based rule. In addition, the last thing for 
us to do is to add a new row to the discernibility matrix with 

( , )( 1,2, ,11)iu u iα = L  and ( , )u uα = ∅ ). To save space, 
it is omitted here. 
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VIII. CONCLUSIONS 
After assuming maximal consistent blocks to be basic blocks 

and acting some set operations on some of them, other kinds of 
blocks such as tolerance class, join and meet blocks or 
compatible kernels or tolerance kernels may be produced. They 
provide us with possibilities to acquire some other kinds of 
finer and precision domain knowledge from incomplete 
decision table different from that in [3,5,7,14] . 
Laying on maximal consistent blocks and join and meet 

blocks, some default definite decision rules are generated by 
our approach. Our deep knowledge is logically similar to the 
inference rule in default logic. That is the reason why we call 
them default definite rules. So they are meaningful in facing 
complicated incomplete decision tables.  
Incremental algorithm proposed here can improve efficiency 

of mining knowledge from IDT when training examples are 
appended one by one, without performing regeneration process 
on the whole IDT. The future work or glorious task may be to 
acquire other rules based on other granules different from join 
and meet blocks here. 
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