
The Challenge of Large-Scale
IT Projects

Ahmet Denker

Abstract—The trend in the world of Information Technology

(IT) is getting increasingly large and difficult projects rather than
smaller and easier. However, the data on large-scale IT project
success rates provide cause for concern. This paper seeks to answer
why large-scale IT projects are different from and more difficult than
other typical engineering projects. Drawing on the industrial
experience, a compilation of the conditions that influence failure is
presented. With a view to improve success rates solutions are
suggested.

Keywords—Software engineering, software economics, project
management, large-scale projects.

I. INTRODUCTION

NFORMATION Technology (IT) is a much younger
branch compared to the other branches of technology. It is

2005, and we are only a half-century into the history of the
ITfield. At this stage, the most common problem is that the
success rates of IT systems are disappointingly low. Industry
reports show that the odds of successful completion drop
noticeably with medium sized projects and disappear almost
completely with large-scale projects. It has been common over
the last decade to read stories of “ IT failure” in both popular
press and computing literature. Although these stories
correspond to a tiny percentage of all the IT projects ever
attempted they represent the seriousness of the problem.
Unfortunately, failure is common, not the exception, in large-
scale IT projects.

Why is there such a serious problem? Because the IT field
has not made a conscientious effort to develop histories of past
project experiences. Because the construction of large-scale
software is very complex- it is the most complex task ever
undertaken by human beings. Because it is invisible-it is all
too common for both customers and developers not to sense
its limitations. Lack of hisstory, complexity and invisibility
make IT projects different from, and more difficult than other
typical engineering projects.

As the IT industry continues to tackle problems that are
forcing its constraints, it becomes even more important to
analyze what go wrong in largge-scale projects.

II. HIGH FAILURE RISK HIGH PRICE TAG
In his seminal book “The Mythical Man-Month” [1] Brooks

correlated large-system programming with the mortal
struggles of dinosaurs in the tar pits. Struggling to meet the
goal, schedule and budget of a large- scale IT project, in fact,
resembles the scenes of violently thrashing prehistoric beasts
in the tar pits. Because of the lack of history, the amount of

complexity and invisibility many large-scale projects share the
unfotunate fate of ancient monsters.

The “Chaos” report of Standish Group in 1995 [2] showed
that many large and powerful companies had become
entangled in the stickiness of the problem. Only 9% of the
large-scale IT projects were delivered on time and in budget.
Large, medium or small, every company seemed to have been
struggling against the grip of the tar. For medium and small
sized companies the struggle was less fierce, however: the
numbers for them improved to 16% and 28% respectively.

In 1999 and 2003, the Standish Group reported
improvements. But the data on IT project rates continued to
provide cause for concern. For example, a recent study carried
out in the U.K. [3] showed that only 16% of the large-scale IT
projects were considered successful.

Daily life experiences -of the “ I am sorry I can’t help you,
the computer is down” sort – have been amplified by
sensationalist journalism. Horror stories of collosal IT failures
continued to hit the headlines. Failures are of course more
sensational than successes, and the high profile failures
significantly tarnished the reputation of IT industry:

• A Lockheed-Martin satellite went off course into
space because there was a hyphen missing in one of
the millions of lines of code.

• Boeing’s Delta III rocket explosion was also caused
by a faulty line of code.

• Ariane 5 prototype exploded due to software failure.
• Hong Kong’s new Airport lost $600 million in its

opening due to IT failure.
• Denver Airport Baggage Handling System turned out

as a disaster classic.
• Libra IT system for the Magistrates Courts in the

U.K. caused to embarrassment of the Government.

These are just a few of a number of sensational failure
stories extracted from newspaper accounts. In fact, chairman
of the U.K. Public Accounts Committee described Libra as
“the worst IT project I have ever seen.” What he was referring
to was a large-scale IT project with a budget of over $500
million.

A recent review [4] estimated that a phenomenal $150
billion was wasted in 2003 due to IT project failures in the
U.S., with a further $140 billion in the E.U. These survey
results show that one thing common in large scale IT projects
is failure, and the price tag attached to failure is unacceptably
large.

I

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:1, No:9, 2007

474International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
9,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
08

01
.p

df

III. WHY THEY FAIL
Everyone seems to have been puzzled by the stickiness of

the problem. It is hard to discern a way out of it. But we must
try to solve this puzzle, because large-scale IT projects are
central to the functioning of our societies in the Information
Age. They are so pervasive that we can scarcely imagine life
without them. They are also crucial to our economic growth.
They create a large part of today’s wealth and jobs. Why then
are large-scale IT projects so susceptible to failure?

A large-scale IT project is a project with a large and
complex software component, it consists of more than 100
people and the project schedule is over 3 years. It is the
complex software component of these projects which make
them different and more difficult than other engineering
projects. “IT failure” generically refers to “software failure”.

A comparison between large-scale projects and small-scale
projects show how different can be success discriminators for
the large project processes: large projects require substantial
management overhead; performance is highly dependent on
the skills of the management; project process maturity is
essential; change management is necessary; maintaining
consistency among the evolving artifacts is imperative.

A. Colossal Complexity
From the beginning of a large-scale IT project, the odds for

failure is higher than for success. Because extreme complexity
is involved in it. Large-scale IT systems are among the most
complex entities man ever built. Building a large-scale IT
system can only be matched with the construction of Egyptian
pyramids in complexity.

Take the IT system in a large-scale organization. Powerful
workstations or personal computers sit on every desk. The
computers are connected in a network. Teams of them are
harnessed together to crunch away on a truly big problem.
Mighty computers called servers support the network and
manage the huge databases. Critical elements supplied by as
many as 100 different vendors from Asia, America and
Europe plug interchangeably into the system. Software
component of such a system consists of several million lines
of code which could fill thousands of books. And a little typo
in one of these books would have the potential to crash the
whole system. The vulnerability increases with size and makes
failure easy.

There are other reasons for the complexity. Software
construction is a people-intensive process. Consequently
managing people has a profound leverage. The famous
Division of Labor Theory does not lend itself easily. Division
of a huge programming task among programmers does not
necessarily mean sharing and reducing the load. Because
software tasks cannot be easily partitioned and the required
effort of intercommunication counteracts the benefits of labor
division. Each part of the task must be separately coordinated
with each other part, and the coordination effort increases as
n(n-1)/2, where n shows the number of parts. A task split into
three parts require three times as much pairwise
intercommunication as a task split into two. When n icreases
from 2 to 4 the required coordination effort is multiplied by 6.

The added complexity of intercommunation is worse when
it comes to creating ties between talented software developers.
They are as varied as they are smart and infamous for being

difficult people to manage. They can be easily disillusioned.
They would rather be told what to do than how to do it. This is
a work style unsuitable to coordination. A talented software
developer can be 10 times as productive as an average one, but
the probability of retaining these exceptional people till the
end of the project is very small.

B. Invisibility
Sofware is invisible, the visualisation problem is what

makes software management different and more difficult from
any other engineering project management. This invisibility is
the source of many IT project failures. Customer cannot have
any underlying sense and may ask for functions that are
impossible to deliver. Their inability to visualise the
boundaries creates indifference to what is possible and what is
not. This encourages people to change their minds more
frequently than they might do for engineering projects where
constraints are obvious.

Invisibility has the danger of creating a misperception that
anything and everything is possible with IT. This makes both
customers and developers susceptible to forgeting the
limitations of IT. As a result, sofware engineers often take on
risks far in excess of the limits accepted in other engineering
disciplines.

C. Over-Optimism
Software managers, especially the less experienced ones

tend to assume that everything will go well, each task will take
only as long as it should take. The act of taking on a large-
scale IT project with such a tendency is, by very definition, an
act of over-optimism. In a large programming effort with n
parts chained side-by-side or end-to-end, the probability that
each will go well becomes vanishingly small. Murphy’s law
applies-“if something can go wrong, it will go wrong.”

Inexperienced managers neither have the experience nor the
authority to negotiate with the upper management.
Understandably, due to pressure from customer, upper
management have a desire to shorten time and to meet
external deadlines. It is almost impossible for the
inexperienced manager to make a job-risking defence against
such desires. The result is unrealistic and overly optimistic
schedules.

Impossibly tight schedules have high stress levels attached
to themselves. Survey results [5] show that stress is the cause
of more than 40% of all software errors. These mistakes mean
enormous amount of rework. Optimism eventually leaves its
place to disbelief, and stress level spirals even higher.

D. Extreme Uncertainties from the Kickoff
An upstream-downstream waterfall image is often

employed as the benchmark of conventional software process.
Like any other creative activity [6], the stages of programming
can be collected into three groups: the idea, the
implementation, and the interaction.

A program comes into existence as an idea, at the project
outset, during the “upstream phase” . However, uncertainty is
high at this phase due to vague customer requirements. In fact,
50 % of the requirements defined at this stage were found to
be useless at the “downstream phase” of projects. Many
projects fail due to flaws in requirement definitions.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:1, No:9, 2007

475International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
9,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
08

01
.p

df

Customers are usually poor in saying what they want, but very
talented at saying what they do not want. Software developers
suffer from changing requirements during the course of the
project. “ Nobody would force a builder to build the basement
after having put on the roof, but in the software industry, that
is common practice” [7]. This is a phenomenon known as
“feature creep”.

Requirements management is a concern throughout the
project life-cycle. If customers do not understand the
implications of changing requirements and asking for highly
complex systems then the project is likely to be in red. Failure
to strike a balance can and will lead to major slippages of time
and money.

E. The Gulf between Best Practice and Common Practice
Following best practices is a an exception rather than rule in

IT industry. It appears that no other engineering discipline has
such a gulf between best practice and typical practice.

IT professionals are required to be competent in appropriate
areas. However, there is widespread complaint about lack of
professionalism in IT industry. Projects are often poorly
defined, codes of best practices are frequently ignored.

The breakneck speed of technological change and ferocity
of commerial competition led to the triumph of short cut
solutions over best practices. Extremely rapid progress of
technological progress in IT emerges as an obstacle to
professionalism. This pace makes it difficult for expertise in a
particular technique or language to mature. A culture is
estalished where the use of tools or solutions that are not yet
proven is not only aceptable but also commonplace.

F. Rework
The creation is not complete until the customer runs the

program. Then occurs the interaction of customer with the
mind of the creators. It is at this stage that the incompleteness
and inconsistencies of the developers’ ideas become clear. In
every piece of a complex software there are embedded a
number of assumptions. The large the number of these
assumptions means some of them will prove incorrect at the
interacion phase.

Thus “rework” becomes an essential and inescapable part of
the process. Rework then takes time, money and sweat. The
optimistic schedules are thorougly affected by rework.
Furthermore the time required depends on the number and
subtlety of the discrepancies encountered.

 In the conventional waterfall model testing comes at the
end of the schedule and with an unrealistically short time.
Because of optimism managers usually expect the numbers of
bugs to be smaller than they turn out to be. That’s why, testing
is usually the most mis-scheduled part of the process. Failure
to allow enough time for system test is particularly disastrous.
Since it comes at the end of the schedule. The delay at this
stage is late and unsettling with severe financial and
psycological repercussions. The project is fully staffed and
cost-per-day is maximum.

Examination of IT project schedules show that few have
allowed time for rework, but that most indeed spend half of
the actual schedule for that purpose.

IV. HOW TO SOLVE IT
Many of the reasons of failure seem to adhere to already

known reasons. Thus, one would think that a significant
percentage of IT failures could have been avoided using
techniques we already know. As stated in the Cobb’s Paradox
[8]: “We know why projects fail, we know how to prevent their
failure-so why do they still fail?”

As a possible explanation for Cobb’s paradox we can say
that unfortunately practice in the management of large-scale
IT systems does not seem to have kept up with the exponential
rate of human ambition. There is a well documented good
practice but it is all too rarely used. Commercial pressures
mean that more and more complex systems need to be
delivered in ever decreasing time-frames. As a consequence,
success loses out in a trade-off against speed and complexity.
Hence, there is a major software engineering challenge to deal
with the irresistable rise in the demand for speedy delivery of
increasingly complex IT systems.

Complexity in large-scale IT systems remains an area which
is insufficiently understood. The degree of complexity of a
particular project can be very difficult to estimate at the
project kick-off. Projects may involve much more complexity
than esimated at the outset. This makes large-scale projects
extremely prone to failure. Research into better understanding
and estimation of complexity is required.

Change management is critical in ensuring that excessive
requirement alterations do not lead to lead cost and time
runaways. Slippages of time and money associated with
change proposals must be conveyed to the customer. Judicious
use of freeze dates can help to control feature creep.

Due to over-optimism, many projects are undertaken on the
assumption that the software will be or can be made to be
perfect. In reality, rework often accounts for half of the
software development budgets. Despite this, all too often
testing and rework are left to the very end of the schedule. In
fact, what will make a positive difference is to use the good
practice that ensures code is developed and tested iteratively.

Most software experts agree that “ if software development
moves from a ‘build everything yourself’ to a ‘assemble
reusable products’ model that would mean a major boost to
success rate.

V. CONCLUSION
“The Mythical Man Month,” 20 years after its publication

contains many perspective observations that remain
disconcertingly relevant today. It is clear that lack of history,
complexity and invisibility make large-scale IT projects prone
to be stuck in tar-pits. Uncertainty of requirements, over-
optimistic management, unrealistic schedules correlate
inversely with performance.

The trend is getting increasingly large and difficult projects
rather than smaller and easier. The demand is for building
even more ambitious systems. There is some element of more
complexity, more change, more uncertainty, greater difficulty
everywhere. It is clear that we have to improve
professionalism not only to improve existing perfomance
levels but even to maintain them. Further research into
sofware engineering methods and development of project
management is in demand more than ever. Developments in
understanding complexity adhered to scale will be needed to

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:1, No:9, 2007

476International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
9,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
08

01
.p

df

meet the challenge of emerging large-system requirements on
a scale never encountered before.

Our findings show that most of IT project failures could
have been avoided using the best practices. In fact, a
significant percentage of IT industry fails to implement the
known best practices. In the light of increasing complexity of
the IT sytems, the roles and responsibilities of IT professionals
are becoming more and more critical and the need for
adherence to best practice is of ever greater importance.

REFERENCES
[1] Brooks, F. P., The Myhical Man Month, Addison Wesley1995.
[2] Standish Group, Chaos, 1995
[3] Sauer, C. and Cuthbertson, C., The State of IT Project Management in

the U.K., Oxford, 2003.
[4] Darren, D. And Genus, A., Avoiding IS/IT Implementation Failure,

TASM, vol. 15, No. 4, pp. 403-407, 2003.
[5] Glass, R. “IS Field: Stress Up, Satisfaction Down,” Software

Practitioner, 1994.
[6] Soyers, D., The Mind of the Maker, Harper San Francisco
[7] Hoch, D. J., Secrets of Software Success, Harvard Press, 2000.
[8] Cobb, M., Unfinished Voyages, A Follow-up to the CHAOS Report,

The Standish Group, 1996.

Ahmet DENKER. B.S in EE, Boğaziçi Üniversity(1977); M.S. and Ph.D
Sussex University, England (1978-1981). Dr. Denker worked as a full time
professor at Boğaziçi University between years 1982 and 1999, gave lectures
on Control and Robotics and supervised several theses. He was entitled
“Chartered Engineer” (C.Eng.) by the Council of Engineering of U.K.. His
particular areas of interest are applications of industrial control and
Information Technology. He was a project manager at the Robotic Science
Division of TUBİTAK (Turkish Scientific and Engineering Research Council)
Marmara Research Center between 1992 and 1996 whereby he lead a team
working on an industrial robot with visional capabilities. He held visiting
positions in Sussex University (U.K.), Open University (U.K.), Eastern
Mediterranean University (Cyprus) and Keio University (Japan). In 1996 he
was awarded a medal by Matsumae International Organization of Japan for
his contributions to science and peace. He acted as the General Manager of
HAVELSAN Inc. between years 1996 and 2003. Through his leadership,
Havelsan had undertaken critical responsibilities in initiating various e-
government, IT and defense industry projects which elevated HAVELSAN to
the top 100 defense companies world-wide as well as to number one IT
company in Turkey. Dr. Denker is a full time professor at Ankara University
since 2003 and giving lectures in Information Systems Engineering and
Management.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Manufacturing Engineering

 Vol:1, No:9, 2007

477International Scholarly and Scientific Research & Innovation 1(9) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 M

an
uf

ac
tu

ri
ng

 E
ng

in
ee

ri
ng

 V
ol

:1
, N

o:
9,

 2
00

7
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
08

01
.p

df

