

Abstract—Model mapping and transformation are important

processes in high level system abstractions, and form the cornerstone
of model-driven architecture (MDA) techniques. Considerable
research in this field has devoted attention to static system
abstraction, despite the fact that most systems are dynamic with high
frequency changes in behavior. In this paper we provide an overview
of work that has been done with regard to behavior model mapping
and transformation, based on: (1) the completeness of the platform
independent model (PIM); (2) semantics of behavioral models; (3)
languages supporting behavior model transformation processes; and
(4) an evaluation of model composition to effect the best approach to
describing large systems with high complexity.

Keywords—MDA; PIM; PSM; QVT; Model Transformation

I. INTRODUCTION
ESPITE the growth of interest in model-driven
architecture (MDA) there is still little agreement on how
behavioral aspects should be supported with the

approach. Considerable effort has been devoted recently to
model mapping and the transformation from platform
independent models (PIMs) to platform specific models
(PSMs) in many application domains. Much of this work has
focused heavily on behavioral aspects of PSMs. There is a
need for broader consideration of behavior model mapping
using either vertical mapping (refinement) or horizontal
mapping (from PIM to PSM).
 The central idea of Model Driven Architecture (MDA)
which sponsored by Object Management Group (OMG) is that
developer should develop models, not programs. That is not to
privilege a graphical over a textual programming, but rather to
make the developer to be enabled to work at as a high level of
abstraction as is feasible. The general scenario of MDA is a
single platform independent model (PIM) might be created
and transformed, automatically, into various platform specific
models (PSMs) by the systematic application of understanding
concerning how applications are best implemented on each
specific platform. The OMG’s queries, views and
transformations (QVT) standard [1] defines languages in
which such transformations can be written.[2]

It is possible to analyze the current state of the development
of procedures for the mapping and transformation of behavior

*Mohammed Abdalla Osman Mukhtar is a PhD Student in the Universiti
Teknologi PETRONAS, Department of Information Science & Technology
(phone: +60 1472 30771; e-mail: abofatima92@gmail.com).

**Assoc.Prof.Dr. Azween Bin Abdullah is with the Department of
Information Science & Technology, Universiti Teknologi PETRONAS,
Bandar Seri Iskandar, Perak 31750 MALAYSIA (e-mail:
azweenabdullah@petronas.com.my).

***Dr. Alan Giffin Downe is with the Management & Humanities
Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak
31750 MALAYSIA, (e-mail: alan_downe@petronas.com.my).

according to four dimensions. The first of these relates to the
semantics of behavioral (operational) models. The second
relates to the completeness of behavior platform independent
model (PIM). The third considers the languages that have
been developed or proposed for application to behavior model
mapping and transformation. The final dimension examines
the suitability of new trends for model composition.

The purpose of this paper is to give more attention to the
stage of describing the system requirement in high level
abstraction especially in the PIM to add more details to make
MDA as a framework for behavior model mapping.

II. COMPLETENESS OF PIM
If one traces the development of MDA approaches, it can

be seen that most research has focused attention on: (1)
structural aspects of the PSM level; and (2) processes for
generating code. Much less attention has been typically
devoted to the PIM model level or to the behavior of modeled
applications. One exception was found in the work of Daniele
et al. [3], which presented an MDA-based approach that
incorporated behavior modeling at the PIM level, but within a
specific category of applications. These authors argued that
behavior in a PIM can be divided to more than one layer of
abstraction, the first one being more independent than
subsequent layers, and the deeper ones, essentially, moving
nearer to a PSM.

This approach was applied to a Mobile System (M-MUSE
DSL), in which the platform-independent design phase was
decomposed in the service specification and platform-
independent service design steps [3]. PIM design, it was
argued, should be a refinement of the service specification,
which implies that correctness and consistency particularly of
behavioral issues must be addressed in the refinement
transformation. However, when trying to realize this
refinement transformation, the gap between service
specification and platform-independent service design can
become rather wide, such that correctness and consistency
becomes hard to guarantee in a single refinement
transformation, T1. Therefore, an intermediate step in which
the service specification behavior is refined (see figure1) may
be necessary.

Mohammed Abdalla Osman Mukhtar*, Azween Abdullah**, and Alan Giffin Downe***

Behavior Model Mapping and Transformation using
Model-Driven Architecture

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:2, 2011

166International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

2,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
89

/p
df

Fig. 1 PIM levels and transformation between these levels [3]

III. SEMANTICS OF BEHAVIORAL MODELS

Key to the development of the MDA approach has been
the extensive work aimed at defining the description
semantics of Object Constraints Language (OCL), the
programming or modeling languages. For that, metamodeling,
since the beginning of this decade, has become a widely used
tool to describe the abstract syntax of modeling languages.
There are two generally acknowledged approaches to
describing OCL constraints semantics [4]. For instance, this
constraint eval:
CONSTRAINT × STATE → {true,false,undefined}

Can be defined either mathematically by using structural
induction over CONSTRAINT (refer to [5]), or logically like
using Isabelle/High-Order Logic (HOL).

These two approaches have a good manner to evaluate OCL
constraints in a formal and non-ambiguous method, but they
still have some disadvantages. First disadvantage is this gap
between OCL’s official syntax definition which is given as
metamodel, and the OCL’s syntax which is given in structural
induction. Second, which is the main drawback is the
understandability.
The main technique to heal the rift of this gap and to get good
understandability is metamodeling. Metamodels are already
used to define abstract syntax with very expressive and easy to
understand. It is already used to define the semantics of class
diagrams. This technique is sponsored by OMG using
Evaluation-Metaclasses [4], and this approach is provided
using transformation rules written in QVT. Figure2 shows
metamodel for OCL abstract syntax, and figure3 shows
metamodel for the semantics of OCL. In [6] also applying
graph transformation to OCL constraints semantics.

Fig. 2 MetaModel for OCL – Syntax [4]

Now, in recent years, OCL becomes a constraint language
that is applied to various modelling languages, instead of just
it is a language used to constrain UML models. This includes
Domain Specific Languages (DSLs), and meta-modelling
languages like MOF or Ecore.

Fig. 3 MetaModel for OCL – Semantics [4]

The new trend is going on providing variability to OCL
parsers to work with different modeling languages; variability
concentrate on the technical space which models are
implemented in (like Java, Ecore, or a specific model
repository). In [7] the authors argued that all OCL tools
support variability at the model level (OCL compilers), for
that they said we can support variability at the model instance
level (OCL interpreter) and proposed a generic adaptation
architecture for OCL interpreters that hides models and model
instances behind well-defined interfaces. This enables reuse of
the complete OCL infrastructure including the OCL parser,
standard library and interpreter. There is also some work done
for modeling operational semantics of domain specific
modeling language (DSML) as presented in [8], which

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:2, 2011

167International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

2,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
89

/p
df

applyed this approach to petri nets as well as for a stream -
oriented language in the domain of earthquake detection.

IV. SUPPORTING LANGUAGES FOR MAPPING OF BEHAVIOR
MODELS

There is a lot of transformation languages working as a tool
to make the transformation operation full automated, we have
chosen a three types of these languages depend on some
criterion. First one is Query, View, Transformation
(abbreviated by QVT) which is most standardized, which is
sponsored by Object Management Group (OMG). The second
one is KerMeta (abbreviation of Kernel Metamodel), it is
domain specific language, it is building basically on Object
Oriented Programming, and it can be plugged on Eclipse. The
third one is MATA (abbreviation of Modeling Aspects using a
Transformation Approach), from its’ name we can see that it
is building on Aspect Oriented Programming. Now we need to
take each language individually, and focusing the light on
some its’ features, and making technical comparison.

A. QVT
QVT (Query/Views/Transformation) is the OMG standard

language for specifying model transformations in the context
of MDA. It is regarded as one of the most important standards
since model transformations are proposed as major operations
for manipulating models [8].
The three concepts that are used in the name of the QVT
language as defined by OMG documents are: [9]
Query: A query is an expression that is evaluated over a

model. The result of a query is one or more instances
of types defined in the source model, or defined by
the query language.

View: A view is a model which is completely derived from
another model (the base model). There is a ‘live’
connection between the view and the base model.

Transformation: A model transformation is a process of
automatic generation of a target model from a source
model, according to a transformation definition.

QVT languages are arranged in a layered architecture
shown in Figure 4. The languages Relations and Core are
declarative languages at two different levels of abstraction.
The specification document defines their concrete textual
syntax and abstract syntax. In addition, Relations language has
a graphical syntax. Operational Mappings is an imperative
language that extends Relations and Core languages. Relations
language provides capabilities for specifying transformations
as a set of relations among models. Core language is a
declarative language that is simpler than the Relations
language. One purpose of the Core language is to provide the
basis for specifying the semantics of the Relations language.
The semantics of the Relations language is given as a
transformation RelationsToCore. This transformation may be
written in the Relations language.

Sometimes it is difficult to provide a complete declarative
solution to a given transformation problem. To address this
issue the QVT proposes two mechanisms for extending the
declarative languages Relations and Core: a third language

called Operational Mappings and a mechanism for invoking
transformation functionality implemented in an arbitrary
language (Black Box implementation).

Fig. 4 Layered Architecture of QVT Languages [9]

B. KerMeta
KerMeta is a meta-language for specifying the structure and

behavior of models. It has been also been developed as a core
language for Model Driven Engineering (MDE) platform.
KerMeta is an executable metamodelling language
implemented on top of the Eclipse Modeling Framework
(EMF) within the Eclipse development environment. Figure 5
shows three main windows in KerMeta Graphical Interface.
The first one is the metamodel using class diagram(which is a
subset from UML class diagram MOF metamodel), the second
widows is the KerMeta code to describe the class diagram,
and the last one is the summarization for the class diagram.

Fig. 5 KerMeta Graphical Interface [10]

Kermeta is a language for specifying metamodels,
models,and model transformations that are compliant to the
Meta Object Facility (MOF) standard [11]. The object-
oriented meta-language MOF supports the definition of
metamodels in terms of object-oriented structures (packages,
classes, properties, and operations). It also provides model-
specific constructions, such as containments and associations
between classes [10].

C. MATA
MATA takes a different approach to aspect-oriented

modeling (AOM) since there are no explicit join points.
Rather, any model element can be a join point, and
composition is a special case of model transformation. The

Operatinal

Mappings

Relations

Black

Box

Core

extends

extends

extends

extends

RelationsToCore
Transformation

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:2, 2011

168International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

2,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
89

/p
df

graph transformation execution engine, AGG, is used in
MATA to execute model compositions, and critical pair
analysis is used to automatically detect structural interactions
between different aspect models. MATA has been applied to a
number of realistic case studies and is supported by a tool
built on top of IBM Rational Software Modeler.
 Figure 6 [12] shows the base model slice which is
composed of a set of base models. Similarly, an aspect model
slice is composed of a set of aspect models. Base models are
written in standard UML. Aspect models are written in the
MATA language and are defined as increments of the base
models or other aspect models. Each aspect model describes
the set of model elements affected by the aspect (i.e. the
joinpoints) and how the base model elements are affected.
Note that an aspect model can only be defined as an increment
of a model of the same type; for example, sequence diagram
aspects can extend base sequence diagrams but not base state
diagrams.

Fig. 6 An Overview of MATA [12]

V. MODEL COMPOSITION
Model composition is a technique, which used with

behaviour models for building bigger models from smaller
models, thus allowing system designers to control the
complexity of a model-driven design process. But many these
model composition techniques are themselves very complex
because they compose the internal member of participating
models in non-simple manner.
 In [13] they applied some of the ideas from modular
programming to reduce the complexity of model
compositions, trying to provide a model composition
technique with a proposed modular that treats the participating
models as black boxes. They argue that it will be simple, it
does not require a separate language for expressing the
composition, and the resulting composed model will be easy
to understand by the modular nature of the model
composition.

There are a lot of approaches been proposed depending on
different components. Feature model composition [14] is one
of these approaches, where Model-Based Engineering (MBE)
and Aspect-Oriented Modeling (AOM) communities have
developed a set of model composition techniques and tools.
For that there is an interest in determining how these
techniques perform with feature model composition and which
techniques are the most suitable.

Aspect model composition is another approach of
combining two models, MB and MA, where an aspect model
MA is said to crosscut a base model MB. As such, aspect
model composition is a special case of the more general
problem of model fusion. A number of techniques and
languages have been developed to specify how MA crosscuts
MB, and, in particular, how MA and MB should be composed
[12].

VI. CONCLUSION
In this paper we are focusing on behavior model

transformation in order to push the wheel of behavior model
transformation development, and to be aware about some
aspects that we can contribute on to participate in these
developing. These aspects are Completeness of Platform
Independent Model (PIM), Semantics of Behavior Models,
Supporting Languages for Mapping of Behavior Models, and
Model Composition.

REFERENCES
[1] O.M.G. (OMG), “Meta Object Facility (MOF) 2 . 0 Query / View /

Transformation Specification,” Transformation, 2008.
[2] P. Stevens, “Bidirectional model transformations in QVT: semantic issues

and open questions,” Software & Systems Modeling, vol. 9, Dec. 2008,
pp. 7-20.

[3] L.M. Daniele, L.F. Pires, and M.V. Sinderen, “An MDA-Based Approach
for Behaviour Modelling of Context-Aware Mobile Applications”
Behaviour, 2009, pp. 206-220.

[4] S. Marković and T. Baar, “Semantics of OCL specified with QVT,”
Software & Systems Modeling, vol. 7, Mar. 2008, pp. 399-422.

[5] O.M.G. (OMG), “OMG Object Constraint Language,” Management, vol.
03, 2010.

[6] P. Bottoni, M. Koch, F. Parisi-presicce, and G. Taentzer, “Consistency
Checking and Visualization of OCL Constraints,” Constraints, 2000, pp.
294-308.

[7] C. Wilke, M. Thiele, and C. Wende, “Extending Variability for OCL
Interpretation,” 2010, pp. 361-375.

[8] G. Wachsmuth, “Modelling the Operational Semantics of Domain-
Specific Modelling Languages,” Structure, 2008, pp. 506-520.

[9] I. Kurtev, “State of the Art of QVT : A Model Transformation Language
Standard,” Data Engineering, 2008, pp. 377-393.

[10] N. Moha, S. Sen, C. Faucher, O. Barais, and J.-M. Jézéquel, “Evaluation
of Kermeta for solving graph-based problems,” International Journal on
Software Tools for Technology Transfer, vol. 12, Apr. 2010, pp. 273-285.

[11] O.M.G. (OMG), “Meta Object Facility (MOF) Core Specification,”
Management, 2006.

[12] J. Whittle, P. Jayaraman, A. Elkhodary, and A. Moreira, “MATA : A
Unified Approach for Composing UML Aspect Models Based on Graph
Transformation *,” 2009, pp. 191-237.

[13] P. Kelsen and Q. Ma, “A Modular Model Composition Technique,” 2010,
pp. 173-187.

[14] M. Acher, P. Collet, P. Lahire, and R. France, “Comparing Approaches to
Implement Feature Model Composition,” Springer-Verlag Berlin
Heidelberg 2010, 2010, pp. 3-19.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:5, No:2, 2011

169International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:5

, N
o:

2,
 2

01
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
89

/p
df

