
Memory Leak Detection in Distributed System

 Roohi Shabrin S., Devi Prasad B., Prabu D., Pallavi R. S., and Revathi P.

Abstract—Due to memory leaks, often-valuable system memory

gets wasted and denied for other processes thereby affecting the
computational performance. If an application’s memory usage
exceeds virtual memory size, it can leads to system crash. Current
memory leak detection techniques for clusters are reactive and
display the memory leak information after the execution of the
process (they detect memory leak only after it occur).

This paper presents a Dynamic Memory Monitoring Agent
(DMMA) technique. DMMA framework is a dynamic memory leak
detection, that detects the memory leak while application is in
execution phase, when memory leak in any process in the cluster is
identified by DMMA it gives information to the end users to enable
them to take corrective actions and also DMMA submit the affected
process to healthy node in the system. Thus provides reliable service
to the user. DMMA maintains information about memory
consumption of executing processes and based on this information
and critical states, DMMA can improve reliability and
efficaciousness of cluster computing.

Keywords—Dynamic Memory Monitoring Agent (DMMA),
Cluster Computing, Memory Leak, Fault Tolerant Framework,
Dynamic Memory Leak Detection (DMLD).

I. INTRODUCTION
ESPITE of great care being taken by developers to
develop a fault free application, due to developers’

mistakes, applications is bound to error. There are different
types of faults that can occur in cluster computing like
Application and OS faults, etc Memory leak is one of the
major application fault in the cluster computing. Memory
leaks are caused when some part of allocated memory is never
accessed again. This can degrade program performance and it
may lead the program to exhaust systems resource eventually
leading to program crash [1]. As per the CERT [2] memory
leaks and memory consumption are two common forms of
software bugs that severely imperil system availability and
security. As per the CERT vulnerability database, 68% of all
reported vulnerabilities in the past 2003 were caused by
memory leaks or memory corruption. Often High Performance
Computing (HPC) systems are subjected to memory leak
problem and our objective of DMLD technique to provide
efficient resource utilization in the HPC framework. Memory
leaks can create bugs in software that are hard to detect.
Proper care must be taken in allocation and de-allocation of
memory so as to avoid memory leaks. If memory leak can be
detected dynamically, it helps for other executing processes
preventing from starving for memory and systems crashing.

Roohi Shabrin S., Pallavi R. S. and Revathi P. are with BIT Institute of

Technology, Hindupur 515212, India.
Devi Prasad B. and Prabu D. are with Centre for Development of

Advanced Computing, SSDG, Knowledge Park, Bangalore 560038, India.

We studied different tools currently available to detect
memory leak faults. From our study we found that existing
methods gives the memory leak information after the
execution of the application. Our team in this paper proposing
DMLD technique through DMMA, that is an agent based to
deal with memory leak fault dynamically. DMMA designed is
lightweight, complete, intelligent dynamic agents that monitor
the memory leak fault at runtime and dynamically act to avert
and resolve the fault.
 This paper is organized as follows. In section 2 we present
different types of faults that exist in cluster computing. In
section 3 we discussed briefly the existing memory leak
detection tools. Section 4 presents the user application with
and without DMMA. Section 5 discusses the Implementation
of DMMA. Section 6 discusses the experimental evaluation of
DMMA; Section 7 presents the conclusions and the future
direction.

II. TYPES OF FAULTS
This section gives different types of faults that may take

place in cluster based on fault tolerance studies; cluster faults
have been classified into six groups [3]. These six groups are
further divided into different sub classes are shown below.

A. Application and OS faults
 1. Memory leak
 2. Resource unavailability
B. Hardware fault likes faults in Memory chips, CPU and
Storage Disks
C. Network fault: Node Failure, packet loss, corrupted packets
D.Response fault: Value Fault, Byzantine Error
E. Software fault: Un-handled exception, Unexpected Input,
F. Timeout faults

 III. EXISTING MEMORY LEAK TOOLS
There are many tools available today to detect memory

leaks. Like Valgrind and dmalloc, etc. These tools provide
detailed log information about memory leaks after the
execution of the application.

A. Valgrind
Valgrind is an open source tool [4] that can be used to

detect memory leaks in the applications. When the tool is used
with the application executables as a command line argument,
it reports errors in the application [5]. The Valgrind output can
also be directed to a log file to view memory leak details.
Valgrind tool when made to run along with our application. It
consumes more memory. This memory consumption is
increased when running the application through Valgrind. It
monitors allocated memory object and reports leaked memory
by mark-sweeping the virtual memory for unredeemed
objects. Mark sweeping the entire virtual address space can
add significant overhead, especially for server programs that

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008

1101International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
79

/p
df

usually have large address spaces for buffering and caching.
Due to this operation program needs to pause to avoid
inconsistency, which makes the service unavailable during
entire mark sweeping operation [6].

B. Dmalloc
 The dmalloc library replaces the heap library calls normally
found in our system libraries with its own versions [7]. When
we allocate memory with these functions, the dmalloc library
keeps track of a number of pieces of debugging information
about our pointer. This information can then be verified when
the pointer is freed or reallocated and the details can be logged
on any errors. The administration of the library is reasonably
complex. If any of the heap maintenance information is
corrupted, the program will either crash or give unpredictable
results. It even performs fence post checking but library
cannot notice when the program reads from these areas, only
when it writes values. Fencepost checking also increase the
amount of memory the program allocates.

C. Detection of Heap Management
To be able to detect and localize memory leaks from the

traces, all the events where components either allocated or
deallocate memory are logged. By comparing the allocations
and deallocations the memory blocks, which were not properly
deallocated and therefore leaked, can be deduced. The traces
contain the heap addresses of memory blocks in addition to
identification and size information [8]. This approach is more
suitable only for component-based embedded systems and also
other tools available like, mtrace and purity etc.

IV. WORKING OF DMMA IN A CLUSTER

When a process tries to consume more memory than the
virtual memory size, the system may crash. The proposed
DMLD prevents above situation. In DMMA, maximum
memory consumption limit can be set virtually for each
process. When the process tries to consume more memory
than its maximum memory limit then process seems to have
memory leak, and the execution of that process is stopped in
that node and its process execution is submitted to the healthy
node in the cluster.

In the absence of proposed DMMA in the cluster, when a
process tries to consume large amount of memory for long
time (i.e. memory more than its maximum memory
consumption limit), then it may cause other processes to starve
for memory or may lead to system crash as shown in Fig 1. In
presence of proposed DMMA in the cluster, it helps to detect
memory leak and gives the memory leak information during
the execution of the process and it also prevents the system
crash.

Fig. 1 Normal working of clusters without DMMA

Fig. 2 Working of Clusters with DMMA

Memory leak is an application specific problem where
application consumes more memory and never releases it.
Memory leaks lead to shortage of memory space for other
executing jobs in the cluster that potentially result in the

Initial Setup and dispatch job to
each node

For each cluster node
dispatch job

Executing process

System crash

Wait for result
from child node

Process
Complete

Memory
consumption

is high

Initial Setup and dispatch job
to each node

For each
cluster node
dispatch job

Executing
Process

Process
Complete

Memory
>

Mem
limit

Memory
> limit

for T sec

Dynamic
Memory

Monitoring
Agent

Submitted to
healthy node

Wait for
result

from child
node

Peril
state

Yes

Yes

No

No
Yes

Good

Monitor
Memory

consumption

No

Bad
state

Yes No

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008

1102International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
79

/p
df

executing application slowing down which leads to more
swapping.

V. IMPLEMENTATION OF A DYNAMIC MEMORY MONITORING

AGENT
The proposed DMMA shown in Fig. 2 identifies the

memory leak of a particular application. DMMA monitors
total memory utilization of executing tasks in a specific time
interval. Initially the maximum memory consumption of a
currently executing program is set, depending on consumption
of memory by the process, limits are set, and we label
processes as good, bad or peril state. If memory utilization is
higher than the maximum memory consumption limit DMMA
consider the process in a bad state and identifies that process
running on the node has memory leak. Otherwise DMMA
considers the process in good state. If the memory
consumption is very high for longer period then that proposed
DMMA enables process to go into peril state.i.e, the process
execution is stopped and it submit to another healthy node.

The Pseudocode of DMMA presented here is self-
explanatory. In this DMMA we are providing maximum
memory consumption limit with respect to MPI applications.
The different modules of DMMA are shown in the boxes in
listing 1 to 7. The DMMA is listed in subsection A and Client
server paradigm is shown in subsection B.

A. Listing 1: Dynamic Memory Monitoring Agent Pseudo
Code

Dynamic Memory Monitoring Agent ()
 Begin:
 Split the output of ps –ef command.
 Extract the required PID value.
 While 1

 begin:
 Call ‘test’ subroutine
 Split the output of memdata (program)
 Extract “process total memory size”
 if (total memory > maximum memory)

Consumption limit then
 begin

Call ‘bad’ sub routine

 end

 else
 begin
 print “application is in good state”
 print total mem consumption value
 end
 count=0
 sleep for 12 sec

 end while

 1. Listing 2: Subroutine of bad state

Bad state ()
 Begin
 For k=0 to 10 repeat
 Begin
 Call ‘test’ subroutine
 Split the output of memdata (program)
 Extract “process total memory size”
 if total memory is greater than maximum memory

Consumption limit then
 Begin
 Print “risky”
 Print count value
 Count++
 End
 If count is greater than 8
 Begin
 Call ‘peril’ subroutine
 End
 Sleep for 1 sec
 End for
 End (bad state subroutine)

 2. Listing 3: Subroutine peril state

 Peril state ()
 Begin:
 Split the output of memdata (program)
 Extract “process total memory size”
 Print “application execution stopped”
 Open file descriptor for file.txt
 Write PID value of application,
 Executable name,
 Total memory size, to file.text
 Close file descriptor for file.txt

 Send file.txt

 from this client to server host
 (from client socket to server socket)
 die “exe terminated”
 end (peril subroutine)

 3. Lisiting 4: Subroutine test

 test ()
 begin
 split the output of ps-ef command
 check whether the executable to which agent is
 Monitoring
 exists or not
 if executable exists
 begin
 return
 end
 else
 print “executable doesn’t exist”
 die “terminated”
 end (test subroutine)
 end (memory monitoring agent)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008

1103International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
79

/p
df

4. Listing 5: Memdata pseudo code

 memdata ()
 Begin
 Split the output of ps-ef command
 Extract PID value of required executable from this output
 Extract memory consumption details using the command
 Proc/<PID>/status
 Grep the required information
 Print the total memory consumption value
 Print locked memory usage value
 Print resident set memory usage value
 Print heap memory usage value
 Print stack memory usage value
 Print executable memory usage value
 Print shared memory usage value
 End

 B. Listing 6: Sending Leak Information to Cluster Head
Node

Client socket pseudo code: To client socket module we are
providing the server hostname and port number as command
line arguments.

 Client main ()
 begin
 if command line arguments less than 2
 begin
 print “error, server name, port number not
 specified.
 End
 Create a socket ‘sockfd’ to send leak information
 to Server.
 If sockfd less than 0
 Begin
 Print “error opening socket”
 End
 Connect ‘sockfd’ to server socket
 If connect fails
 begin
 Print “no connection established”
 Return
 end
 Open the file ‘file.txt’ in read mode
 If open fails
 begin

 print “can’t open file”
 end
copy the data from ‘file.txt’ into a buffer
write the data in buffer to ‘sockfd’
if write fails
 begin
 print “error writing to socket”
 end

 end(main)

1. Listing 7: Server sockets pseudo code
To server socket we are providing port number as command

line argument.

 Server main ()
 Begin
 If command line argument less than 1
 Begin
 Print “error , port no not specified”
 Return
 End
 Create a socket ‘sersockfd’ to receive data from client
 Bind ‘sersockfd’
 Listen ‘sersockfd’,5
 Set SIGCHLD to ignore
 While 1
 Begin
 Newsockfd= Accept ‘sersockfd’
 If accept fails
 begin
 Print “error on accept”
 End
 If fork is equal to 0
 Begin
 Read from ‘newsockfd’ into buffer
 Print the data in buffer
 Open a file in append mode
 If open fails
 Begin
 Print “can’t open file”
 End
 Write data in buffer to file
 Close file
 Close newsockfd
 exit
 End
 Else
 Begin
 Close newsockfd
 end
 end (while)
 end (main)

VI. EXPERIMENTAL EVALUATION

 The effectiveness of DMMA agent is experimented using
MPI (Message Passing Interface) application on PARAM
Padma Linux Supercomputer nodes. The MPI job is submitted
along with DMMA in the head node (xn02) that acts as server
is shown in Fig. 3. The application process running on this
node is the parent process. The processes running on other
computer nodes (xn01, xn03 and xn04) are known child
processes. We have tested our agent on Linux cluster and the
output is shown in Fig. 4, having 4 Intel xeon nodes at 3 GHz
processor speed and each node has two CPUs, 4GB RAM.
The MPI used in our testing is C-DAC MPI [9] and MPICH
[10] over PARAMNet-II [11] and Gigabit Ethernet as cluster
interconnects.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008

1104International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
79

/p
df

Fig. 3 Computational Cluster showing Head node (Parent process)

and Compute nodes (Child process)

 Our DMMA runs as a background processes on all these
nodes. If the process is subject to memory leak in the cluster,
the DMMA immediately send the details of memory leak
information to the head node where the application is
submitted. The details of memory leak of the child processes
and information of the stopped child processes due to memory
leak are informed to the users in the head node. This is
accomplished by establishing sockets with head nodes and
compute nodes as shown in Fig. 8. The Fig. 5 and Fig. 6
shows the list of application process enters into bad state and
waits for specific interval of time for its corrective action. Fig.
7 shows the application memory consumption without any
memory leak fault.

Fig. 4 Successful execution of MPI application

Fig. 5 Terminated application execution in xn01 due to memory leak

Fig. 6 Terminated application execution in xn04 due to memory leak

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008

1105International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
79

/p
df

Fig. 7 Application completed successfully in xn03 without memory
leak

Fig. 8 Head node-xn02 receives leak information from affected child

nodes

VII. CONCLUSION AND FUTURE WORK
 The proposed DMMA is intelligent and lightweight in
nature. It provides memory leak detection dynamically in a
cluster-computing environment. This approach helps the user
to take preventive measures in their application, because it
detects the memory leak information before it occurs. Hence it
improves the performance and provides reliable service to its
end users. The possible future research works extensions
related to DMMA framework are: Incorporating an algorithm
that can be predict desirable maximum memory utilization
limit of application. DMLD technique can also be extended to
support memory leak management for grid computing.

ACKNOWLEDGMENT
The authors would like to thank Dr. Prahlada Rao BB, Head

SSDG CDAC Bangalore-38 India, for his invaluable feedback
and review comments. The authors convey immense reverence
and thankfulness to Shri Mohan Ram N Centre Head, CDAC
Bangalore-38 for providing the suggestion and guidance to
this project. We also thank Shri Ramakrishnan, Director
General, CDAC India, for his encouragement and kind support
for this project.

REFERENCES
[1] R.Hastings and B.Joyce Purify: Fast detection of memory leaks and

access errors. In proceedings of USENIX winter 1992 Technical
conference, pages 125-136, Dec 1992.

[2] US-CERT vulnerability notes database http://www.kb.cert.org/vuls
[3] Mohammad Tanvir Huda, Heinz W.Schimdt, Ian D.Peake, An agent

oriented dynamic fault tolerant framework for Grid computing 2005,
Monash University: Melbourne.p.84.

[4] Valgrind: A Program Supervision Framework Nicholas Nethercote and
Julian Seward.Electronic Notes in Theoretical Computer Science 89 No.
2, 2003.

[5] Ramandeeep singh, Get the better of memory leaks with Valgrind Linux
J., February2006 (106), 2006.

[6] J.Seward, N.Nethercote, and Fitzhardinge.valgrind, an open -source
memory debugger for x86– gnu/Linux http://valgrind. Kde.org/.

[7] Gray Watson, Debug Malloc Library, Published by Gray Watson,
Version 5.4.2; October 2004.

[8] Heike Verta, T.S. Detection of heap management flaws in
Component-based software. In EUROMICRO, 2004, Rennes, France:
IEEE.

[9] CDAC-MPI, http://www.cdac.in/html/ssdgblr/cmpi.asp
[10] William Groups, Ewing Lusk, Nathan Doss and Anthony Skjellum. “A

High-Performance, Portable Implementation of MPI Message Passing
Interface Standard”. Available at http://www.mcs.anl.gov/mpi/.

[11] PARAMNet, CDAC www.cdac.in/HTmL/pdf/PARAMNet.pdf

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:4, 2008

1106International Scholarly and Scientific Research & Innovation 2(4) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

4,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

05
79

/p
df

