Generalised Slant Weighted Toeplitz Operator

S. C. Arora and Ritu Kathuria

Abstract—A slant weighted Toeplitz operator A_ϕ is an operator on $L^2(\beta)$ defined as $A_\phi = WM_\phi$, where M_ϕ is the weighted multiplication operator and W is an operator on $L^2(\beta)$ given by $W e_{2n} = \frac{c_n}{\beta_n} e_n$, $\{e_n\}_{n \in \mathbb{Z}}$ being the orthonormal basis. In this paper, we generalise A_ϕ to the k-th order slant weighted Toeplitz operator U_ϕ and study its properties.

Keywords—Slant weighted Toeplitz operator, weighted multiplication operator.

I. INTRODUCTION

O. Toeplitz [5] introduced the Toeplitz operators in the year 1911 and later many mathematicians came up with different generalisations of the Toeplitz operators. In 1995, Ho [2] introduced the class of slant Toeplitz operators having the property that the matrices with respect to the standard orthonormal basis could be obtained by eliminating every alternate row of the matrices of the corresponding Toeplitz operators. All these operators arise in plenty of applications like prediction theory [6], solution of differential equations [7] and wavelet analysis [8]. However, these studies were made in context of the usual Hardy spaces and Lorentz spaces. In the mean time, the notion of weighted sequence spaces $H^2(\beta)$ and $L^2(\beta)$ also gained momentum. Shields [4] made a systematic study of the multiplication operator on $L^2(\beta)$, while Lauric [3] studied particular cases of Toeplitz operators on $H^2(\beta)$. Motivated by these studies and various applications of slant Toeplitz operators, we introduced and studied [1] the notion of a slant weighted Toeplitz operator on $L^2(\beta)$. In this paper we extend our study to the k-th order slant weighted Toeplitz operator. We now begin with the notations and preliminaries.

Let $\beta = (\beta_n)_{n \in \mathbb{Z}}$ be a sequence of positive numbers such that $\beta_0 = 1$, $0 < \frac{\beta_n}{\beta_{n+1}} \leq 1$ for all $n \geq 0$ and $0 < \frac{\beta_n}{\beta_m} \leq 1$ for all $n \leq m$. Consider the spaces [4, 3]

$$L^2(\beta) = \left\{ f(z) = \sum_{n=-\infty}^{\infty} a_n z^n | a_n \in \mathbb{C} \right\}$$

and

$$\|f\|_\beta^2 = \sum_{n=-\infty}^{\infty} |a_n|^2 \beta_n^2 < \infty$$

and

$$H^2(\beta) = \left\{ f(z) = \sum_{n=0}^{\infty} a_n z^n | a_n \in \mathbb{C} \right\}$$

and

$$\|f\|_\beta^2 = \sum_{n=0}^{\infty} |a_n|^2 \beta_n^2 < \infty$$

Then $(L^2(\beta), \| \cdot \|_\beta)$ is a Hilbert space with an orthonormal basis $\{e_n(z) = \frac{1}{\beta_n} \}$ and with respect to the inner product defined by $\langle \sum a_n z^n, \sum b_n z^n \rangle = \sum a_n \overline{b_n} \beta_n^2$.

Also, $H^2(\beta)$ is a subspace of $L^2(\beta)$. If,

$$L^\infty(\beta) = \left\{ \phi(z) = \sum_{n=-\infty}^{\infty} a_n z^n | \phi L^2(\beta) \subseteq L^2(\beta) \text{ and } \exists c \in \mathbb{R} \text{ such that } \|\phi\|_\beta \leq c \|f\|_\beta \right\}$$

for all $f \in L^2(\beta)$.

then $L^\infty(\beta)$ is a Banach space with a norm defined by

$$\|\phi\|_\infty = \inf \{ c | \|\phi f\|_\beta \leq c \|f\|_\beta \text{ for all } f \in L^2(\beta) \}$$

If $P : L^2(\beta) \rightarrow H^2(\beta)$ is the orthogonal projection of $L^2(\beta)$ onto $H^2(\beta)$, then the weighted Toeplitz operator T_ϕ on $H^2(\beta)$ [3] with symbol ϕ in $L^\infty(\beta)$ is defined by $T_\phi f = P(\phi f)$ for all $f \in H^2(\beta)$.

Let M_ϕ denote the weighted multiplication operator on $L^2(\beta)$. Then,

$$M_\phi(f) = \phi f \text{ for all } f \in L^2(\beta),$$

and,

$$M_\phi e_k(z) = \sum_{n=-\infty}^{\infty} a_n e_{n-k} \frac{\beta_n e_n(z)}{\beta_k} \text{ for all } k \in \mathbb{Z}.$$
results and many more other properties for the generalised operator $U_φ$. Henceforth we assume that $\frac{\beta_n}{\beta_k} \leq M < \infty$.

II. K-TH ORDER SLANT WEIGHTED TOEPBLITZ OPERATOR

Let $W_k : L^2(\beta) \rightarrow L^2(\beta)$ be defined as

$$W_k e_n(z) = \begin{cases} \frac{\beta_n}{\beta_k} e_{n/k}(z) & \text{if } n \text{ divisible by } k \\ 0 & \text{otherwise} \end{cases}$$

The adjoint of W_k is given by

$$W_k^* e_n(z) = \frac{\beta_n}{\beta_k} e_{kn}(z) \quad \text{for all } n \in Z.$$

Also, the matrix of W_k is

$$\begin{bmatrix}
\vdots & \cdots & \vdots & \cdots & \vdots \\
\cdots & \frac{\beta_n}{\beta_k} & 0 & 0 & \cdots \cdots \cdots \\
0 & \cdots & \frac{\beta_n}{\beta_k} & 0 & \cdots \\
\vdots & \cdots & \cdots & \frac{\beta_n}{\beta_k} & 0 \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}$$

k-times

Therefore $\|W_k\| = \sup \frac{\beta_n}{\beta_k} \leq 1$.

Definition II.1. For an integer $k \geq 2$, we define the k-th order slant weighted Toeplitz operator $U_φ : L^2(\beta) \rightarrow L^2(\beta)$ as $U_φ(f) = W_k M_φ(f)$ for all $f \in L^2(\beta)$. The effect of $U_φ$ on the orthonormal basis $\{e_i(z) = \frac{\phi_i}{\|\phi_i\|} \}_{i \in Z}$ can be given by: $U_φ e_i(z) = \frac{1}{\|\phi_i\|} \sum_{n=-\infty}^{\infty} a_{n-i} \beta_n e_n(z)$. Also, the (i,j)th element of $U_φ$ is given by $(U_φ e_j, e_i) = \langle U_φ e_j, e_i \rangle_i = \frac{1}{\|\phi_j\|} \sum_{n=-\infty}^{\infty} a_{n-kj} \beta_n e_n(z, e_i(z)) = a_{n-i} \beta_n$. Therefore the matrix of $U_φ$ with respect to this basis is as follows:

$$\begin{bmatrix}
\vdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & a_{-k+1} \frac{\beta_1}{\beta_1} & a_{-k} & a_{-k+1} \frac{\beta_1}{\beta_1} & a_{-k+2} \frac{\beta_1}{\beta_2} \\
\cdots & a_{-1} \frac{\beta_1}{\beta_1} & a_{0} \frac{\beta_1}{\beta_1} & a_{-1} \frac{\beta_1}{\beta_1} & a_{0} \frac{\beta_1}{\beta_2} \\
\cdots & a_k \frac{\beta_1}{\beta_1} & a_{k+1} \frac{\beta_1}{\beta_1} & a_{k-1} \frac{\beta_1}{\beta_1} & a_{k} \frac{\beta_1}{\beta_2} \\
\cdots & a_{k+2} \frac{\beta_1}{\beta_1} & a_{k+1} \frac{\beta_1}{\beta_1} & a_{k} \frac{\beta_1}{\beta_1} & a_{k-1} \frac{\beta_1}{\beta_2} \\
\vdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}$$

The adjoint of $U_φ$, denoted by $U_φ^*$ is given by

$$(U_φ^* e_j, e_i) = \langle e_j, U_φ e_i \rangle_i = a_{kj} \beta_j.$$

The matrix of $U_φ^*$ can be obtained now.

III. ALGEBRAIC PROPERTIES

We make the following observations:

Theorem III.1. (i) $W_k = U_1$

(ii) $U_φ$ is bounded

(iii) P reduces W_k

(iv) $W_k M_φ W_k^* = 0$ for $p = 1, 2, \ldots, k - 1$.

Proof: (i) Take $\phi = 1$ in $U_φ = W_k M_φ$.

(ii) $||U_φ|| = ||W_k M_φ|| \leq ||W_k|| ||M_φ|| \leq ||\phi||_∞$

since $||M_φ|| = ||\phi||_∞$ as shown by Shields [4].

(iii) Case (a) $i = kn$, $n \in N \cup \{0\}$.

$$PW_k e_i(z) = PW_k e_{kn}(z) = P \frac{\beta_n}{\beta_k} e_n(z) = \frac{\beta_n}{\beta_k} e_n(z) = W_k e_{kn}(z) = W_k P e_{kn}(z).$$

Case (b) $i = kn$, n is a negative integer.

Then $PW_k e_i(z) = 0 \Rightarrow W_k P e_i(z) = 0$ for all $i \in Z$.

Case (c) i is not a multiple of k.

$$PW_k e_i(z) = 0 = W_k P e_i(z).$$

Hence we conclude that $PW_k = W_k P$ (1)

Now for all $n \in N \cup \{0\}$,

$$PW_k e_i(z) = W_k^* e_n(z) = W_k^* P e_n(z).$$

For negative integers n,

$$PW_k^* e_n(z) = W_k^* P e_n(z)$$

Thus

$$PW_k^* = W_k^* P$$

From (1) and (2) we get that P reduces W_k.

(iv) Consider $f \in L^2(\beta)$. Then $W_k f$ lies in the closed span of $\{e_{kn}(z) : n \in N\}$. Hence $M_φ(W_k f)$ belongs to the closed span of $\{e_{kn+1}(z) : n \in N\}$. Also, $M_φ(W_k f)$ belongs to the closed span of $\{e_{kn+2}(z) : n \in N\}$ and so on. In fact, for all $p = 1, 2, \ldots, k - 1$, $M_φ(W_k f)$ belongs to the closed span of $\{e_{kn+p}(z) : n \in N\}$. Hence $W_k M_φ W_k^* = 0$ for all $f \in L^2(\beta)$. Therefore $W_k M_φ W_k^* = 0$ for all $p = 1, 2, \ldots, k - 1$.

Lemma III.2. If $h(z)$ is an $L^2(\beta)$ function and for a fixed integer $k \geq 2$, $\frac{\alpha}{\alpha_n} \leq M < \infty$, then $h(z^k)$ is also an $L^2(\beta)$ function.

Proof: Let $h(z) = \sum_{n=-\infty}^{\infty} \alpha_n z^n$ be an $L^2(\beta)$ function.

Then

$$||h(z)||_β^2 = \sum_{n=-\infty}^{\infty} |\alpha_n|^2 \frac{\beta_n}{\beta_k} < \infty$$

Also, then

$$h(z^k) = \sum_{n=-\infty}^{\infty} \alpha_n z^{kn} = \sum_{n=-\infty}^{\infty} \alpha_n \beta_{kn} e_{kn}(z).$$
Hence
\[
\|h(z^k)\|_2^2 = \sum_{n=-\infty}^{\infty} |a_n|^2 \beta_n^2 \\
= \sum_{n=-\infty}^{\infty} |a_n|^2 \beta_n^2 \\
\leq M^2 \sum_{n=-\infty}^{\infty} |a_n|^2 \beta_n^2 < \infty
\]
from (3).
Therefore \(h(z^k)\) is also an \(L^2(\beta)\) function.

Theorem III.3. For all \(f \in L^2(\beta)\),
(i) \(W_k f \in L^2(\beta)\) if \(\frac{\beta_n}{\beta_k}\) is bounded.
(ii) \(W_k f \in L^2(\beta)\).

Proof: (i) Let \(f(z) = \sum a_n z^n\) be in \(L^2(\beta)\). Then
\[
W_k f(z) = W_k \sum a_n z^n \\
= W_k \sum a_n \beta_n e_n(z) \\
= \sum a_n \beta_n W_k e_n(z) \\
= \sum a_n \beta_n \frac{\beta_n^2}{\beta_k} e_n(z) \\
= f_k(z)
\]
where
\[
f_k(z) = \sum a_n \frac{\beta_n^2}{\beta_k} z^n.
\]
We claim that \(f_k(z) \in L^2(\beta)\).
Since
\[
\|f_k(z)\|_2^2 = \sum |a_n|^2 \frac{\beta_n^4}{\beta_k^2} \\
\leq \sum |a_n|^2 \beta_k^2 < \infty.
\]
Hence \(f_k(z)\) is in \(L^2(\beta)\). Also, then by Lemma III.2, \(f_k(z)\) is in \(L^2(\beta)\). This implies that \(W_k f(z) \in L^2(\beta)\).
(ii) Let \(f = \sum a_n z^n \in L^2(\beta)\). Then
\[
W_k f(z) = W_k \sum a_n z^n \\
= \sum a_n W_k e_n(z).
\]
Since \(W_k\) eliminates all other terms, we consider only those terms for which \(n\) is a multiple of \(k\). That is \(n = km\) (say).
Then
\[
W_k f(z) = \sum_{m=-\infty}^{\infty} a_{km} \beta_m e_m(z) \\
\Rightarrow \|W_k f(z)\|_2^2 = \sum_{m=-\infty}^{\infty} |a_{km}|^2 \beta_m^2 \\
= \sum_{m=-\infty}^{\infty} |a_{km}|^2 \beta_{km}^2 \\
\leq \sum_{m=-\infty}^{\infty} |a_{km}|^2 \beta_{km}^2 < \infty
\]
Now,
\[
\sum_{n} |a_n|^2 \beta_n^2 < \infty \\
\Rightarrow \sum_{n \neq km} |a_n|^2 \beta_n^2 + \sum_{n=km} |a_n|^2 \beta_n^2 < \infty \\
\Rightarrow \sum_{m} |a_{km}|^2 \beta_{km}^2 < \infty
\]
Hence, we conclude that \(W_k f \in L^2(\beta)\).

Theorem III.4. \(W_k f(z^k) = f(z)\) for all \(f \in L^2(\beta)\).

Proof: Let \(f = \sum a_n z^n\) be in \(L^2(\beta)\). Then
\[
W_k f(z^k) = W_k \sum a_n z^{kn} \\
= \sum a_n W_k (\beta_{kn} e_n(z)) \\
= \sum a_n \beta_{kn} e_n(z) \\
= \sum a_n z^n \\
= f(z).
\]

Corollary III.5. \(W_k \phi(z^k) = \phi(z)\) for all \(\phi \in L^\infty(\beta)\).

Lemma III.6. (i) \(W_k W_k^* f(z) = f_k(z)\) where \(f_k(z) = \sum a_n \frac{\beta_n^2}{\beta_k^2} z^n\).
(ii) \(W_k^* W_k f(z) = h(z)\) where \(h(z) = \sum a_{kn} \frac{\beta_n^2}{\beta_{km}^2} z^n, n \in Z\).

Proof: (i) \(W_k W_k^* f(z) = W_k f_k(z) = f_k(z)\).
Thus \(W_k W_k^* \neq I\) as in the case of ordinary space \(L^2[2]\).
(ii) \(W_k^* W_k f(z) = W_k^* f_k(z) = f_k(z)\).
Thus \(W_k^* W_k f(z) = h(z)\), where
\[
h(z) = \sum a_{kn} \frac{\beta_n^2}{\beta_{km}^2} z^n, \ n \in Z.
\]

Theorem III.7. If \(\beta = \{\beta_n\}_{n \in Z}\) is a sequence of positive numbers such that \(\beta_n = 1, \ 0 < \frac{\beta_n}{\beta_{n+1}} \leq 1\) for \(n \geq 0\), \(0 < \frac{\beta_n}{\beta_{n+1}} \leq \frac{1}{n+1}\), \(\leq 1\) for \(n < 0\) and \(\frac{\beta_n}{\beta_{n+1}} \leq M < \infty\), then a bounded operator \(U\) on \(L^2(\beta)\) is a \(k\)-th order slant weighted Toeplitz operator if and only if \(MzU = UMz^k\).

Proof: For necessity: Let \(U = U_0\) be a slant weighted
we can show that
Hence, from (7) and (8) we conclude that
On the other hand,
where $f_0, f_1, \ldots, f_{k-1}$ are all in $L^2(\beta)$. Then,
Now, as W_k eliminates all other terms, we consider only the following terms. We get

Corollary III.8. $M_\psi U_\phi$ is a k-th order slant weighted Toeplitz operator.

Proof:

REFERENCES