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A note on the minimum cardinality of critical sets
of inertias for irreducible zero-nonzero patterns of
order 4
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Abstract—If there exists a nonempty, proper subset S of the set
of all (n+ 1)(n + 2)/2 inertias such that S C i(.A) is sufficient for
any m X n zero-nonzero pattern A to be inertially arbitrary, then S is
called a critical set of inertias for zero-nonzero patterns of order n.
If no proper subset of S is a critical set, then S is called a minimal
critical set of inertias. In [Kim, Olesky and Driessche, Critical sets
of inertias for matrix patterns, Linear and Multilinear Algebra, 57 (3)
(2009) 293-306], identifying all minimal critical sets of inertias for
n X n zero-nonzero patterns with n > 3 and the minimum cardinality
of such a set are posed as two open questions by Kim, Olesky and
Driessche. In this note, the minimum cardinality of all critical sets
of inertias for 4 x 4 irreducible zero-nonzero patterns is identified.

Keywords—Zero-nonzero pattern, Inertia, Critical set of inertias,
Inertially arbitrary.

I. INTRODUCTION

N n x n zero-nonzero pattern is a matrix A = [a;;] with

entries in {x,0} where % denotes a nonzero real number.
The set of all real matrices A = [a;;] such that a;; # 0 if
and only if o;; =  for all ¢ and j. If A € Q(A), then A
is a realization of A. A subpattern of an n X n zero-nonzero
pattern A = [«;;] is an n x n zero-nonzero pattern B = [3;;]
such that 3;; = 0 whenever a;; = 0. If B is a subpattern of
A, then A is a superpattern of 5. A zero-nonzero pattern A
is reducible if there is a permutation matrix P such that

T A Az
papr = (A 42)
where A;; and Aso are square matrices of order at least one.
A pattern is irreducible if it is not reducible.

Recall that the inertia of a matrix A is an ordered triple
i(A) = (n4,n_,ng) where ny is the number of eigenvalues
of A with positive real part, n_ is the number of eigenvalues of
A with negative real part, and nq is the number of eigenvalues
of A with zero real part. The inertial of zero-nonzero pattern
Ais i(A) = {i(A)] A € Q(A)}. An n x n zero-nonzero
pattern A is an inertially arbitrary pattern (IAP) if given any
ordered triple (n4,n_,ng) of nonnegative integers with ny +
n_ + ng = n, there exists a real matrix A € Q(A) such that
i(A) = (ny,n_,ng). Equivalently, A is an inertially arbitrary
pattern if all the (n+1)(n+2)/2 ordered triples (n4,n_,ng)
of nonnegative integers with n4 +n_ 4+ ng = n are in i(A);
see, e.g., [2-4].
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Let S be a nonempty, proper subset of the set of all (n +
1)(n + 2)/2 inertias for any n x n zero-nonzero pattern A. If
S Ci(A) is sufficient for A to be inertially arbitrary, then S
is said to be a critical set of inertias for zero-nonzero patterns
of order n and if no proper subset of S is a critical set of
inertias, S is said to be a minimal critical set of inertias for
zero-nonzero patterns of order n; see, e.g., [3]. All minimal
critical sets of inertias for irreducible zero-nonzero patterns
of order 2 are identified. But as posed in [3], identifying all
minimal critical sets of inertias for irreducible zero-nonzero
patterns of order n > 3 is an open question. Also open is the
minimum cardinality of such a set.

In this note, we concentrate on the minimum cardinality of
all critical sets of inertias for irreducible zero-nonzero patterns
of order 4. It is shown that the minimum cardinality of all
critical sets of inertias for 4 X 4 irreducible zero-nonzero
patterns is 3.

II. PRELIMINARIES AND MAIN RESULTS

A zero-nonzero pattern A = [o;;] has an associated digraph
D(A) with vertex set {1,2,...,n} and for all ¢ and j, an arc
from i to j if and only if c;; is *. A (directed) simple cycle of
length k is a sequence of k arcs (i1,i2), (42,3), ..., (ig, 1)
such that the vertices 41,...,7; are distinct. The digraph of
a matrix is defined analogously; see, e.g., [1]. A digraph is
strongly connected if for each vertex ¢ and every other vertex
j (1), there is an oriented path from i to j. A zero-nonzero
pattern A is irreducible if and only if its digraph, D(A), is
strongly connected. For any digraph D, let G(D) denote the
underlying multigraph of D, i.e., the multigraph obtained from
D by ignoring the direction of each arc; see, e.g., [2].

The following lemma 1 was stated as Proposition 2 in [2],
which is useful to determine whether a zero-nonzero pattern
is inertially arbitray or not.

Lemma 1. Let A be an irreducible n x n zero-nonzero
pattern and let A € Q(A). If T is a direct subgraph of D(A)
such that G(T) is a tree, then A has a realization that is
diagonally similar to A such that each entry corresponding
to an arc of T is 1.

We proceed by showing the following zero-nonzero pattern
is nearly inertially arbitrary.
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Theorem 1 Let

* x 0 =%
¥ % x 0
N= 0 0 0 =x
x 0 *x O

Then the zero-nonzero pattern N allows all inertias (ny,na,
ng) with nonnegative integers ny, na and ng such that ni+
ng + n3 = 4 except inertia (0,0,4).

Proof. Since (0,0,4) € i(N) if and only if A/ allows some
characteristic polynomial of the form

z* + (p+ q)2* + pq

for p, ¢ > 0. Suppose A is a realization of A/. By Lemma 1,
without loss of generality, let

A:

O O -
~ O = O
o = O o

o OO0

for some nonzero real numbers a, b, ¢, d, e and f. Then the
characteristic polynomial of A is

pa(z) =2 — (a + d)2® + (ad — ¢ — be — f)z?

+[(a+d)f + bde]x + cf — adf — e.

Suppose
pa(x) =a*+ (p+ @)z’ + pq
Then
a+d=0
and

(a+d)f +bde=0

It follows that
bde = 0.

It is a contradiction. Hence, A does not allow (0,0, 4).

Next we show that the zero-nonzero pattern N allows
all the remaining inertias. Note that for an arbitrary zero-
nonzero pattern N, (ny,n_,ng) € i(N) if and only if
(n_,n4,ng) € i(N). So to complete the proof, it suffices
to show that A/ allows inertias (1,0,3), (2,0,2), (1,1,2),
(3,0,1), (2,1,1), (4,0,0), (3,1,0) and (2,2,0).

Consider realizations of N

-2 1 0 3 1 10 3
2 310 -3 110
o o001l o 00 1]
-3 010 30 1 0
%102 2 1 0 -2
13 1 o0 411 0
00 0 1)]°l0oo0o0 1 |’
2 0 -3 0 402 0

International Scholarly and Scientific Research & Innovation 4(1) 2010

3 1.0 3 2 1.0 %
-3 310 4 21 0

0 00 1]l 000 1 |
-3 0 3 0 -2 0 4 0
110 -2 1 1 01
111 0 i 210
000 1 [™Yf 0 o0 01
2 03 0 -3 0 10

with inertias (1,0,3), (2,0,2), (1,1,2), (3,0,1), (2,1,1),
(4,0,0), (3,1,0) and (2,2,0), respectively. It follows that N/
allows all inertias except (0,0,4).

Corollary 1. Let S be a nonempty, proper subset of the
set of all (n + 1)(n + 2)/2 inertias for 4 x 4 irreducible
zero-nonzero patterns. If S is a critical set of inertias, then

(0,0,4) € S.

Proof. By a way of contradiction assume that (0,0, 4) does
not belong to S. Then S must contain some of the rest of
inertias. By Theorem 1, S C i(N) and N is not inertially
arbitrary. It follows that .S is not a critical set of inertias; a
contradiction.

The following result was stated as Theorem 4 in [2].

Lemma 2. Let the zero-nonzero pattern of order 4

0 = 0 0
* 0 *x 0
M= 0 0 * =
* 0 0 =%
Then M allows all inertias (n1,ma,n3) with nonnegative

integers ny, ny and ns such that ny + ng + nz = 4 except
(1,0,3), (0,1,3), (2,0,2) and (0,2,2).

The following corollary indicates that the minimum
cardinality of critical sets of inertias for irreducible 4 x 4
Zero-nonzero patterns is at least 2.

Corollary 2. There is no critical set of inertias with a
single inertia for irreducible 4 x 4 zero-nonzero patterns.
Moreover, if S is a critical set of inertias for irreducible
4 x 4 zero-nonzero patterns, then S must contain (0,0,4)
and one of the inertias (1,0,3), (0,1,3), (2,0,2) and (0,2, 2).

Proof. The first part of Corollary 2 follows directly from
Theorem 1 and Lemma 2. If S is a critical set of inertias,
then (0,0,4) € S by Corollary 1. If none of the inertias
(1,0,3), (0,1, 3), (2,0,2) and (0,2,2) is in S, the S C i(M)
in Lemma 2. But it is clear that M is not inertially arbitrary.
It follows that S is not a critical set of inertias; a contradiction.

Theorem 2. Let the zero-nonzero pattern of order 4

x ok % %
*x x 0 0

P=1400 0

£ 00 0
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Then P allows all inertias (ni,ng,n3) with nonnegative
integers ni, ng and ng such that ni + no +ns = 4 except the
only inertias (4,0,0), (0,4,0), (3,1,0), (1,3,0) and (2,2,0).

Proof. Since P requires singularity, it follows that all of
the inertias (4,0,0), (0,4,0), (3,1,0), (1,3,0) and (2,2,0)
are not allowed by P.

Consider realizations of P

1 1 11 1 11 1
2 ~1.0 0 1 10 0
1 0 0o /'l 1 000l
1 0 00 1.0 0 0
1 11 1 2 1 1 1
110 0 3 2.0 0
1 000/l 1 0o ool
1.0 0 0 1 0 0 0
1 11 1 11 1 1
1.2 0 0 32 0 0
200 0 |™| 1 00 0
1 00 0 20 0 0

with inertias (0,0,4), (1,0,3), (2,0,2), (1,1,2), (3,0,1)
and (2,1,1), respectively. It follows that the zero-nonzero
pattern P allows all inertias except (4, 0,0), (0,4,0), (3,1,0),
(1,3,0) and (2,2,0).

It was known that the set {(0,0,4),(1,0,3),(4,0,0)} is a
minimal critical set of inertias for irreducible zero-nonzero
patterns of order 4. Other minimal critical sets on inertias can
be obtained by replacing (4,0,0) or (1,0,3) by its reversal;
see, e.g., [3, Theorem 7]. As mentioned in Section 6 in
[3], for n = 4, it is unknown that whether there are other
critical sets of inertias. Also mentioned is that the minimum
cardinality of all critical sets of inertias for 4 x 4 irreducible
zero-nonzero patterns is at most 3. The next theorem answers
this problem completely.

Theorem 3. The minimum cardinality of all critical sets of
inertias for irreducible 4 x 4 zero-nonzero patterns is 3.

Proof. By a way of contradiction suppose that the minimum
cardinality of all critical sets of inertias is 2. Let S be an
arbitrary critical set of inertias with cardinality 2. Then, by
Corollary 2, S must contain (0,0,4) and only one of the
inertias (1,0, 3), (0,1, 3), (2,0,2) and (0,2, 2).

Case 1. S contains inertias (0,0,4) and (1,0,3) or its
reversal. Then S does not contain all the inertias (4,0, 0),
(0,4,0), (3,1,0), (1,3,0) and (2,2,0). By Theorem 2, we
have S C i(P) and P is not inertially arbitrary. It follows that
S is not a critical set of inertias for irreducible zero-nonzero
patterns of order 4, which is a contradiction.

Case 2. The case that S contains inertias (0,0,4) and
(2,0,2) or its reversal is similar to Case 1. We omit its proof.
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