A note on the minimum cardinality of critical sets of inertias for irreducible zero-nonzero patterns of order 4

Ber-Lin Yu and Ting-Zhu Huang

Abstract—If there exists a nonempty, proper subset S of the set of all (n + 1)(n + 2)/2 inertias such that $S \subseteq i(A)$ is sufficient for any $n \times n$ zero-nonzero pattern A to be inertially arbitrary, then S is called a critical set of inertias for zero-nonzero patterns of order n. If no proper subset of S is a critical set, then S is called a minimal critical set of inertias. In [Kim, Olesky and Driessche, Critical sets of inertias for matrix patterns, Linear and Multilinear Algebra, 57 (3) (2009) 293-306], identifying all minimal critical sets of inertias for $n \times n$ zero-nonzero patterns with $n \ge 3$ and the minimum cardinality of such a set are posed as two open questions by Kim, Olesky and Driessche. In this note, the minimum cardinality of all critical sets of inertias for 4×4 irreducible zero-nonzero patterns is identified.

Keywords—Zero-nonzero pattern, Inertia, Critical set of inertias, Inertially arbitrary.

I. INTRODUCTION

N $n \times n$ zero-nonzero pattern is a matrix $\mathcal{A} = [\alpha_{ij}]$ with entries in $\{*, 0\}$ where * denotes a nonzero real number. The set of all real matrices $A = [a_{ij}]$ such that $a_{ij} \neq 0$ if and only if $\alpha_{ij} = *$ for all i and j. If $A \in Q(\mathcal{A})$, then Ais a realization of \mathcal{A} . A subpattern of an $n \times n$ zero-nonzero pattern $\mathcal{A} = [\alpha_{ij}]$ is an $n \times n$ zero-nonzero pattern $\mathcal{B} = [\beta_{ij}]$ such that $\beta_{ij} = 0$ whenever $\alpha_{ij} = 0$. If \mathcal{B} is a subpattern of \mathcal{A} , then \mathcal{A} is a superpattern of \mathcal{B} . A zero-nonzero pattern \mathcal{A} is reducible if there is a permutation matrix \mathcal{P} such that

$$\mathcal{PAP}^{T} = \left(\begin{array}{cc} \mathcal{A}_{11} & \mathcal{A}_{12} \\ 0 & \mathcal{A}_{22} \end{array}\right)$$

where A_{11} and A_{22} are square matrices of order at least one. A pattern is irreducible if it is not reducible.

Recall that the inertia of a matrix A is an ordered triple $i(A) = (n_+, n_-, n_0)$ where n_+ is the number of eigenvalues of A with positive real part, n_- is the number of eigenvalues of A with negative real part, and n_0 is the number of eigenvalues of A with zero real part. The inertial of zero-nonzero pattern \mathcal{A} is $i(\mathcal{A}) = \{i(A) | A \in Q(\mathcal{A})\}$. An $n \times n$ zero-nonzero pattern \mathcal{A} is an inertially arbitrary pattern (IAP) if given any ordered triple (n_+, n_-, n_0) of nonnegative integers with $n_+ + n_- + n_0 = n$, there exists a real matrix $A \in Q(\mathcal{A})$ such that $i(A) = (n_+, n_-, n_0)$. Equivalently, \mathcal{A} is an inertially arbitrary pattern if all the (n+1)(n+2)/2 ordered triples (n_+, n_-, n_0) of nonnegative integers with $n_+ + n_- + n_0 = n$ are in $i(\mathcal{A})$; see, e.g., [2-4].

Let S be a nonempty, proper subset of the set of all (n + 1)(n+2)/2 inertias for any $n \times n$ zero-nonzero pattern \mathcal{A} . If $S \subseteq i(\mathcal{A})$ is sufficient for \mathcal{A} to be inertially arbitrary, then S is said to be a critical set of inertias for zero-nonzero patterns of order n and if no proper subset of S is a critical set of inertias, S is said to be a minimal critical set of inertias for zero-nonzero patterns of order n; see, e.g., [3]. All minimal critical sets of inertias for irreducible zero-nonzero patterns of order 2 are identified. But as posed in [3], identifying all minimal critical sets of inertias for irreducible zero-nonzero patterns of order $n \ge 3$ is an open question. Also open is the minimum cardinality of such a set.

In this note, we concentrate on the minimum cardinality of all critical sets of inertias for irreducible zero-nonzero patterns of order 4. It is shown that the minimum cardinality of all critical sets of inertias for 4×4 irreducible zero-nonzero patterns is 3.

II. PRELIMINARIES AND MAIN RESULTS

A zero-nonzero pattern $\mathcal{A} = [\alpha_{ij}]$ has an associated digraph $D(\mathcal{A})$ with vertex set $\{1, 2, \ldots, n\}$ and for all *i* and *j*, an arc from *i* to *j* if and only if α_{ij} is *. A (directed) simple cycle of length *k* is a sequence of *k* arcs $(i_1, i_2), (i_2, i_3), \ldots, (i_k, i_1)$ such that the vertices i_1, \ldots, i_k are distinct. The digraph of a matrix is defined analogously; see, e.g., [1]. A digraph is strongly connected if for each vertex *i* and every other vertex $j \ (\neq i)$, there is an oriented path from *i* to *j*. A zero-nonzero pattern \mathcal{A} is irreducible if and only if its digraph, $D(\mathcal{A})$, is strongly connected. For any digraph D, let G(D) denote the underlying multigraph of D, i.e., the multigraph obtained from D by ignoring the direction of each arc; see, e.g., [2].

The following lemma 1 was stated as Proposition 2 in [2], which is useful to determine whether a zero-nonzero pattern is inertially arbitray or not.

Lemma 1. Let A be an irreducible $n \times n$ zero-nonzero pattern and let $A \in Q(A)$. If T is a direct subgraph of D(A) such that G(T) is a tree, then A has a realization that is diagonally similar to A such that each entry corresponding to an arc of T is 1.

We proceed by showing the following zero-nonzero pattern is nearly inertially arbitrary.

Ber-Lin Yu and Ting-zhu Huang are with the School of Mathematical Science, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054 China e-mail: (berlin.yu@gmail.com).

Theorem 1 Let

$$\mathcal{N} = \left(\begin{array}{cccc} * & * & 0 & * \\ * & * & * & 0 \\ 0 & 0 & 0 & * \\ * & 0 & * & 0 \end{array} \right).$$

Then the zero-nonzero pattern \mathcal{N} allows all inertias (n_1, n_2, n_3) with nonnegative integers n_1 , n_2 and n_3 such that $n_1 + n_2 + n_3 = 4$ except inertia (0, 0, 4).

Proof. Since $(0,0,4) \in i(\mathcal{N})$ if and only if \mathcal{N} allows some characteristic polynomial of the form

$$x^4 + (p+q)x^2 + pq$$

for $p, q \ge 0$. Suppose A is a realization of \mathcal{N} . By Lemma 1, without loss of generality, let

$$A = \left(\begin{array}{rrrr} a & 1 & 0 & b \\ c & d & 1 & 0 \\ 0 & 0 & 0 & 1 \\ e & 0 & f & 0 \end{array}\right)$$

for some nonzero real numbers a, b, c, d, e and f. Then the characteristic polynomial of A is

$$p_A(x) = x^4 - (a+d)x^3 + (ad-c-be-f)x^2 + [(a+d)f + bde]x + cf - adf - e.$$

Suppose

$$p_A(x) = x^4 + (p+q)x^2 + pq$$

Then

a + d = 0

and

$$(a+d)f + bde = 0$$

It follows that

$$bde = 0.$$

It is a contradiction. Hence, \mathcal{N} does not allow (0, 0, 4).

Next we show that the zero-nonzero pattern \mathcal{N} allows all the remaining inertias. Note that for an arbitrary zerononzero pattern \mathcal{N} , $(n_+, n_-, n_0) \in i(\mathcal{N})$ if and only if $(n_-, n_+, n_0) \in i(\mathcal{N})$. So to complete the proof, it suffices to show that \mathcal{N} allows inertias (1, 0, 3), (2, 0, 2), (1, 1, 2), (3, 0, 1), (2, 1, 1), (4, 0, 0), (3, 1, 0) and (2, 2, 0).

Consider realizations of \mathcal{N}

$$\begin{pmatrix} -2 & 1 & 0 & \frac{1}{2} \\ -\frac{22}{3} & 3 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{4}{3} & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 0 & \frac{4}{3} \\ -\frac{1}{2} & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{3}{4} & 0 & \frac{1}{2} & 0 \end{pmatrix}, \\ \begin{pmatrix} \frac{1}{2} & 1 & 0 & 2 \\ \frac{1}{4} & \frac{1}{2} & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & -3 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 0 & -2 \\ 4 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 0 & 2 & 0 \end{pmatrix},$$

$$\begin{pmatrix} \frac{1}{2} & 1 & 0 & \frac{2}{3} \\ -\frac{3}{4} & \frac{1}{2} & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 0 & 3 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 0 & \frac{11}{2} \\ 4 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -2 & 0 & 4 & 0 \end{pmatrix}, \\ \begin{pmatrix} 1 & 1 & 0 & -2 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 2 & 0 & 3 & 0 \end{pmatrix} \text{and} \begin{pmatrix} 1 & 1 & 0 & 1 \\ \frac{1}{2} & -2 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{3}{2} & 0 & 1 & 0 \end{pmatrix}$$

with inertias (1,0,3), (2,0,2), (1,1,2), (3,0,1), (2,1,1), (4,0,0), (3,1,0) and (2,2,0), respectively. It follows that \mathcal{N} allows all inertias except (0,0,4).

Corollary 1. Let S be a nonempty, proper subset of the set of all (n + 1)(n + 2)/2 inertias for 4×4 irreducible zero-nonzero patterns. If S is a critical set of inertias, then $(0,0,4) \in S$.

Proof. By a way of contradiction assume that (0, 0, 4) does not belong to S. Then S must contain some of the rest of inertias. By Theorem 1, $S \subseteq i(\mathcal{N})$ and \mathcal{N} is not inertially arbitrary. It follows that S is not a critical set of inertias; a contradiction.

The following result was stated as Theorem 4 in [2].

Lemma 2. Let the zero-nonzero pattern of order 4

$$\mathcal{M} = \left(\begin{array}{cccc} 0 & * & 0 & 0 \\ * & 0 & * & 0 \\ 0 & 0 & * & * \\ * & 0 & 0 & * \end{array} \right).$$

Then \mathcal{M} allows all inertias (n_1, n_2, n_3) with nonnegative integers n_1 , n_2 and n_3 such that $n_1 + n_2 + n_3 = 4$ except (1, 0, 3), (0, 1, 3), (2, 0, 2) and (0, 2, 2).

The following corollary indicates that the minimum cardinality of critical sets of inertias for irreducible 4×4 zero-nonzero patterns is at least 2.

Corollary 2. There is no critical set of inertias with a single inertia for irreducible 4×4 zero-nonzero patterns. Moreover, if S is a critical set of inertias for irreducible 4×4 zero-nonzero patterns, then S must contain (0,0,4) and one of the inertias (1,0,3), (0,1,3), (2,0,2) and (0,2,2).

Proof. The first part of Corollary 2 follows directly from Theorem 1 and Lemma 2. If S is a critical set of inertias, then $(0,0,4) \in S$ by Corollary 1. If none of the inertias (1,0,3), (0,1,3), (2,0,2) and (0,2,2) is in S, the $S \subseteq i(\mathcal{M})$ in Lemma 2. But it is clear that \mathcal{M} is not inertially arbitrary. It follows that S is not a critical set of inertias; a contradiction.

Theorem 2. Let the zero-nonzero pattern of order 4

$$\mathcal{P} = \begin{pmatrix} * & * & * & * \\ * & * & 0 & 0 \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0 \end{pmatrix}.$$

Then \mathcal{P} allows all inertias (n_1, n_2, n_3) with nonnegative integers n_1 , n_2 and n_3 such that $n_1 + n_2 + n_3 = 4$ except the only inertias (4, 0, 0), (0, 4, 0), (3, 1, 0), (1, 3, 0) and (2, 2, 0).

Proof. Since \mathcal{P} requires singularity, it follows that all of the inertias (4,0,0), (0,4,0), (3,1,0), (1,3,0) and (2,2,0) are not allowed by \mathcal{P} .

Consider realizations of \mathcal{P}

$ \left(\begin{array}{c} 1\\ -2\\ 1\\ -1 \end{array}\right) $	$\begin{array}{c}1\\-1\\0\\0\end{array}$	$\left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right), \left(\left(\begin{array}{c} \\ \end{array} \right) \right)$	$\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ -1 & 0 \end{pmatrix}$	$\left. \begin{array}{cc} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right),$
$ \left(\begin{array}{c} 1\\ -1\\ 1\\ -1 \end{array}\right) $	$\begin{array}{ccc} 1 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\left(\begin{array}{c}1\\0\\0\\0\end{array}\right),\left(\begin{array}{c}1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\1\\$	$\begin{array}{cccc} 2 & 1 \\ -3 & -2 \\ 1 & 0 \\ -1 & 0 \end{array}$	$\left. \begin{array}{ccc} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right),$
$ \left(\begin{array}{c} 1\\ -1\\ -2\\ 1 \end{array}\right) $	$\begin{array}{ccc} 1 & 1 \\ 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$ and	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} \right)$

with inertias (0,0,4), (1,0,3), (2,0,2), (1,1,2), (3,0,1)and (2,1,1), respectively. It follows that the zero-nonzero pattern \mathcal{P} allows all inertias except (4,0,0), (0,4,0), (3,1,0), (1,3,0) and (2,2,0).

It was known that the set $\{(0,0,4), (1,0,3), (4,0,0)\}$ is a minimal critical set of inertias for irreducible zero-nonzero patterns of order 4. Other minimal critical sets on inertias can be obtained by replacing (4,0,0) or (1,0,3) by its reversal; see, e.g., [3, Theorem 7]. As mentioned in Section 6 in [3], for n = 4, it is unknown that whether there are other critical sets of inertias. Also mentioned is that the minimum cardinality of all critical sets of inertias for 4×4 irreducible zero-nonzero patterns is at most 3. The next theorem answers this problem completely.

Theorem 3. The minimum cardinality of all critical sets of inertias for irreducible 4×4 zero-nonzero patterns is 3.

Proof. By a way of contradiction suppose that the minimum cardinality of all critical sets of inertias is 2. Let S be an arbitrary critical set of inertias with cardinality 2. Then, by Corollary 2, S must contain (0,0,4) and only one of the inertias (1,0,3), (0,1,3), (2,0,2) and (0,2,2).

Case 1. S contains inertias (0,0,4) and (1,0,3) or its reversal. Then S does not contain all the inertias (4,0,0), (0,4,0), (3,1,0), (1,3,0) and (2,2,0). By Theorem 2, we have $S \subseteq i(\mathcal{P})$ and \mathcal{P} is not inertially arbitrary. It follows that S is not a critical set of inertias for irreducible zero-nonzero patterns of order 4, which is a contradiction.

Case 2. The case that S contains inertias (0,0,4) and (2,0,2) or its reversal is similar to Case 1. We omit its proof.

ACKNOWLEDGMENT

This research was supported by NSFC (60973015), Sichuan Province Sci. & Tech. Research Project (2009HH0025) and the Youth Foundation of Huaiyin Institute of Technology (2917384).

REFERENCES

- R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1995.
- [2] I. J. Kim, J. J. McDonald, D. D. Olesky, P. van den Driessche, Inertias of zero-nonzero patterns, Linear and Multilinear Algebra 55(3)(2007) 229-238.
- [3] I. J. Kim, D. D. Olesky, P. van den Driessche, Critical sets of inertias for matrix patterns, Linear and Multilinear Algebra 57(3)(2009) 293-306.
- [4] M. S. Cavers, K. N. Vander Meulen, Inertially arbitrary nonzero patterns of order 4, Electron. J. Linear Algebra 16(2007) 30-43.