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Ghazi S. Kahmmash

Abstract—New generalization of the new class matrix
polynomial set have been obtained. An explicit representation and
an expansion of the matrix exponential in a series of these matrix
are given for these matrix polynomials.
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I. INTRODUCTION

ECENTLY, Hermite matrix polynomials have been
introduced and studied in [3]-[4] and generalization of
Hermite matrix polynomials are given [6] for matrix in

C ™M whose eigenvalues are all situated in the right open
half-plane. Moreover, some properties of the Hermite matrix

polynomials have been presented in [1]-[2]. If D,is the
complex plane cut along the negative,
log(z ) denotes the principal logarithm of z , then z

real axis and
1/2

represents exp(%log(z )j If Ais a matrix

inC N the set of all the eigenvalues of A is denoted by
o(A).if f (z)and g (z ) are holomorphic functions of
the complex variable z ,which are defined in an open set
Q of the complex plane, and A is a matrix inC NN such
thato (A ) €. Then from the properties of the matrix

functional calculus [7] . It follows that

f(A)g(A)=g(A)f (A). 1t Ais a

witho (A) =Dy, then AY2=\JA" denotes the a image
1/2

matrix

by z7°of the matrix functional calculus acting on the
matrix A . We say that A is a positive stable matrix

if Re(z)>0 forall z eo(A) (1)

If A(k ,n)are matrix inC "™ for n>0and k >0
then it follows that [1].

A(k,n-k) 2)

n=0 k =0 n=0 k =0
) © [n/Z]
DY Ak,n)=> > A(k,n-2k) @
n=o0 k=0 n=0 k=0
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For m is a positive, similarly to(2) one can find [6].

[n/m

> Akn) =3

n=0 k=0 n=o0 k=

A(k,n-mk); n>m (4

o

a new class of matrix polynomial kn (X,A) suggested by

Hermite polynomials Hn(X,A) have been introduced

and discussed in " as discussed by Kahmmash [5] " as

follows.

H[ _21( ) ( A /2)”—(3/2 nly 236 g

kn(X’A):ZZ (n—2r—35)!l’!5!

r=0 s=0
Where k, (x,A) is a polynomial of degree precisely

2n inX and that
n
k,(x,A)=(3(A/2)) x*
The aim of this paper is to derive the generalization of
new class of matrix polynomials set , an explicit
representation ,expand the matrix exponential in a series of
the generalized new class of matrix polynomial set with

some recurrence relations in particular the four terms
recurrence relation for theses matrix polynomials.

®)

+ Ty 5N X.

Il. DEFINITION OF GENERALIZATION OF A NEW CLASS OF
MATRIX POLYNOMIALS SET
Let A be a matrix in C """ such that Re(,u)> 0 for
every eigenvalue

n=012,...AeR"and mis a positive integer, we
define the generalized anew of matrix polynomials by
E ( X 1 )_e(ﬂ(3(A/2)x2t—3~/A/2xt”"1+t'”l))

=Sk (XA
n=0

HE O'(A). For

(6)

Since

exp(/l(3 (A12)x%t -3 JAT2xt" "+t ))

A(AI2x% | -32\Al2xt™? e A

=e’ e
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. [ﬁ} » ( A/Z) X2 )n—2r—35
n=0 r=0 s=0 ( ) )'r'SI

) ﬂn—nn+2r+s (_1)r (3 A 2x )r t n+ms'

B © [mi—lﬂmm_)r} (3(A/ 2) Xz)ﬂ—(m—l)r—rrs

) = (n—(m-1)r—ms)iris!

ammernemes (L) (3JAT2x )t

ki n(X,A)

[#}[ﬁ} (_ )T n'x 2n—2(m—l)r—2ms+rin—(m+2)r—(m—1)s
-2 X (n=(m=1)r—ms)lris!

r=0  s=0

(A/2) (m-1)r—ms+(1/2)r 3" ~(m —1)r—ms+r.

n[n:\l}{”‘(r:] : } (_1)1’ ﬂn{m—z)rmXZn{Zm%)r—Zns
22 /ﬂm*z)r”m’l)s( n—~m-1)r—ms)irls! @

r=0 s=0
I'T'I -3/2)r-ms n—(m-2)r—ms
o gne(m-2yrems

(A12)"
Where krfm (X ,A) is a polynomial of degree precisely
2n in X and that
Kiw (X A)=((A12)) X" + 75y (%)

Where 7, (X )is a matrix polynomial of degree

(2n-m)in x .
For simplicity we denote Kk (X ,A ) for the generalized

new class of matrix polynomials when A=L1it should be
observed that ,in view of the explicit representation
(6) the generalized new

class of matrix polynomials knl]3 (X ,A) reduces to the

new class of matrix polynomials kn (X ,A)/ nlas given
in ( 5 )
Note that

(3Ax Sthz) ™

—t e3(A/2)x2t—3Mxtm’1
mdm
dx "

International Scholarly and Scientific Research & Innovation 3(2) 2009

Bl 3(A/2)xt-3JAl2xt™

This,

exp[(BAx ~3JAI2 tm’z)_

exp3(A/2)xt -3 JAl2xt "™

-3 Laax-aVArze )

i exp(3(A/2)x2t —3JA/2x t’”’l).

_Z tm" exp( (A/2)xt-3 A/2xtm‘1)
- exp( (A72)x%-3JAT2xt" +t" 1)
There fore, we have

m

mJexp3(A/2)x2t

exp((BAx —3JA/2tM2 )_m :X
= ikn_m (x,A)t
n=0

~3JA/2xt"

exp((3Ax ~3JA 2" )7m d mm j

dx
=\ X
;n—( (A12)x

= ikn_m (x,A)t
n=0

Identification of the coefficients of t" in both sides gives a
new representation for the generalized
new class matrix polynomials for A =1, in the form:

Kom (X ,A) :%exp{(%x -3VA/2 tm*z)_m %} (8)

A/2tm2)

(3(A12)x —3JAT2t"2) x".
(A12)

m =2 the (8)

representation for the new class matrix polynomials
in the form .

For expression gives  another

2
kn,m(x,A)zﬁexp((?,Ax -3JAI2 )Zdo)l(—z} 9)

(3(A12)x -3JATZ ) x
Let B be a matrix in C """
‘Re(,u)‘>‘lm(,u

satisfies the spectral property .
)‘,VIUEO'(B) (10)
Suppose that A =2B %in view of the spectral mapping
theorem [7] it is easy to find that

O'(A):{sz b eo(B )} and by (10) we have

Re(20?)=2| (Re(b))'~ (Im(b))’ |>0, bec(B)
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That is, A is appositive stable matrix .In (2.1) piteirfgNo2, 2§09 ot = ,1(3(A/2)x —3(m-1)vA/2xt"? +mt ‘1I)

t=1 and B =+A /2 gives.
exp( 2(3(AB ) -3Bx +1)) = > k7 (x,2B7)
n=0

Therefore for the matrix B satisfies (10),an expansion of

exp(3/1x2 B —3x )B in a series of the new class

matrix polynomials is obtained in the form:

exp(31x*B -3x )B

=exp(4) ikrﬁm (x.2B?) , —o0<x <oo.
n=0

I1l. RECURRENCE RELATIONS

Now, since

F(x.t)=e

= ikf,m (x,A)t
n=0

Differentiating (3.1) with respect to X yields .

A((sAxt -3/A72t )) e
—ZD K i (X A"

By (11) and (12),we have

/1(3Axt —3\/A/2tm‘1)
KA (A=Y DK (XA
n=0

n=0

(A(s(ar2x -3 AT2xt" 2™ )) 1)

(12)

/1(3Ax —3\/A—/2tm’2)
Zk

Since D k(fm (X ,A)
A(3Ax—3/AT2t"? |k, (x,A) =Dk, (X,A) (13)
lteration (13) ,for 0< k <n gives.
D k. (x,A)
= 2(3Ax —3/AT2t" )}k Fen(XA)
Differentiating (11) with respect to X and t, we find
of 1ox = A(3Axt-3JA /2t )

(X, A)t"= ZDk AN

= 0 , then for N >1 one obtains

(14)

coxp( A(3(A72)xt -3 /AT2xt" 4t ).

And
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e (A(3(ar2)’t-3JAT2xt" 41"

Therefore, F (X 1 )satisfies the partial matrix differential

P Mymy ji
3 OX

—(Axt—JA/Z xtm‘l)%:O.

Which by using (11)

(%x 2l o(m-1) VA2 xt™ 4—2t’“1l ji‘pkn%m(x Alt
n=0
~(Axt—vAT2t"?) Sn

equation.

((A/Z)le ~(m-1)JA/2xt"*

K7 (X, A" =0,

n=1
Or
ZAxnk X, At" = Z\/Alznkﬁ AT
@A/z)xzDk;m(x,A)tn-im-wA_/zxth;m(x,A)
n=
z D ki X A) n+m-— 1
Or
in ki (X A" :i\/UZA xnk7, (x, A"
n=1
+Z—Dkﬂ A" —i(m—l VI/2A (U/x )tmm?
n=l
Dk i S m A n+m—1.
+nZ; A x (x,A)t
Since ki, (X,A):(/lxx/ﬁ) Int, for

0<n<m —2 then we get .

ki, (x,A):XED k2, (x,A) (15)
+((n/X)—(m—1)J1/_2A(1/ )| DKLz (,A)

3 (A/X)D kn}bm+l(X’A)'

For A=1, from (6),

exp( (3(A72)xt-3/AT2xt"" +t"1 )
2xt™t et Iikn .

n=0
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i iii(smx)f (-1

n=0 r=0 s=0 ris!
.tn (m-1)r+ms kn,m (X ,A)

n ]| n=(m-yr

= (3(A/2) £ [m—lﬂ m } -1y

Z( ) (xt) v5 ¥ ( |)|

n=0 n=0 r=0 s=0 ris?

(3 A/2x) K (e mem (X A).
By equating of the coefficients of t" , one gets
n o)
ﬁI = (3A72)" i (-1) (16)

(SVATZ X K,y (6 A).

Since

exp( (3(A/2)xt-3/AT2x " +t"u" )

= exp (3(A/2)xt-3/A/2xt" " +t"1)
.exp(—t’”+tmu’”l).

Then
: ( o)
anm x,A)(tu)" ZZ
n=0k=0
Ak, o (XA

k
:i/ - (1 u ) kn—mk,m(X’A)tn

n=0 k=0

Mz

Which , by comparing the coefficients of t" we get

u"k, . (x,A)= (17)

.["ﬁn:](‘l)k (i—!“m I K

n=0

n-mk,m (X ’A)

We thus arrive to the following result.
Theorem 3.1. The generalized new class of matrix
polynomials set. Satisfy the following relations:

1- D¥ k., (x,A)=

[/I(BAX _3JA /2t )]k Fon(X,A)

2- nk; . (x,A)=

XED Kt (X, A)+((n1x)~(m ~1)VIT2A (1/x))
DK o (X A)+§(A/x )DK L (X,A).
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x 2" . [ﬁﬂn_(m ﬂ )
3-——1=(3A/2)" > X

n! = = rlsl

: (3\/A /2 x )r Koty ms.m (X A).
4- uk, . (x,A)=

nim) (-2) (1-u™)

2k

n=0
Now, inserting (13) in (15), yields

nkZ, (x,A)= %(3,1Ax ~31JAT2t"?) g

k

Ko mim (X A).

k:lm( )+((nlx)_(m_l)\/7(llx)) n- m+2m(X’A)

(x,A).

+§(A/X)D krferl
Replacing N by n —m +1in (3.3), gives

D kr? m+1m(X’A):

A(3Ax —3VAT2t" 2 )k, L (X A).

Substituting from (19) into (18), yields
The four terms recurrence relation as given in the following
theorem:

(19)

Theorem 3.2.
polynomials K

The generalized new class matrix
(x,A), satisfy the
four terms recurrence relation:

Nk, (X,A) = 3)2“ (Ax A7)k (x,A) (20)

()~ -IVTZA (115 (X A

/’tm m-2 A
+E(Ax —JAT2t )kn_m(x,A),n >m .

With initial values
ki (X,A)=(2x+2A)/n1,0<n<m -2,

REFERENCES

[1] E. Defez, L. Jodar “Some application of the Hermite matrix
polynomials series expansions,” J. comp. Appl. Math. Vol. 99(1-2)
pp.105-117, (1998).

[2] E. Defez, M.Garcia —Honrubia and R.J. Villanueva, “A procedure for
computing the Exponential of a matrix using Hermite matrix
polynomials”, Far East. J. Applied Mathematics, 6(3)pp. 217-231,
2002.

[3] L. Jodar, E. Defez,
matrix function”, J.

[4] L.Jodar, R. Company, “Hermite matrix polynomials and second order
matrix differential equations,J”. Approx. Theory Appl1,2 (2) pp.20-
30, 1996.

[5] G. S. Kahmmash (2008), “A new class of matrix polynomial set
suggested by Hermite matrix Polynomials”, to be published.

[6] K.A.M. Sayyed, M.S. Metwally , R.S. Batahan, “On Generalized
Hermite Matrix Polynomials” Elect. J. Linear Algebra Vol.(10)
pp.272-279, 2003.

[71 N. Dunford , J. Schwartz , “Linear operators”. Vol. I, Interscience ,
New York, Approx. Theory Appl, 14(1) pp.36 — 48, 1998.

“On Hermite matrix polynomials and Hermite

111 1SN1:0000000091950263





