Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Influence of Microstructural Features on Wear Resistance of Biomedical Titanium Materials

Authors: Mohsin T. Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

The field of biomedical materials plays an imperative requisite and a critical role in manufacturing a variety of biological artificial replacements in a modern world. Recently, titanium (Ti) materials are being used as biomaterials because of their superior corrosion resistance and tremendous specific strength, free- allergic problems and the greatest biocompatibility compared to other competing biomaterials such as stainless steel, Co-Cr alloys, ceramics, polymers, and composite materials. However, regardless of these excellent performance properties, Implantable Ti materials have poor shear strength and wear resistance which limited their applications as biomaterials. Even though the wear properties of Ti alloys has revealed some improvements, the crucial effectiveness of biomedical Ti alloys as wear components requires a comprehensive deep understanding of the wear reasons, mechanisms, and techniques that can be used to improve wear behavior. This review examines current information on the effect of thermal and thermomechanical processing of implantable Ti materials on the long-term prosthetic requirement which related with wear behavior. This paper focuses mainly on the evolution, evaluation and development of effective microstructural features that can improve wear properties of bio grade Ti materials using thermal and thermomechanical treatments.

Keywords: Wear Resistance, Heat Treatment, Thermomechanical Processing, Biomedical Titanium Materials.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1329490

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3613

References:


[1] D. F. Williams, Titanium for Medical Applications. In: Brunette, D.M., Tengvall, P., Texfor, M., Thomsen, P. (Eds.), Titanium in Medicine. Springer, New York, 2001.
[2] D. M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in medicine. Heidelberg: Springer, 2001.
[3] M. Niinomi, T. Hattori, S. Niwa, "Material Characteristics and Biocompatibility of Low Rigidity Titanium Alloys for Biomedical Applications", in: M.J. Yaszemski, D.J. Trantolo, K-U. Lewandrowski, V. Hasirci, D.E. Altobelli, D.L. Wise (Eds.): Biomaterials in Orthopedics, Marcel Dekker Inc., New York, 2004, pp. 41-91.
[4] L. Capitanu, J. Onisoru, A. Iarovici, C. Tiganesteanu, "Scratching mechanisms of hip artificial joints", Tribology in Industry, Vol. 30, no. 1-2, pp. 23-32, 2008.
[5] S.A. Brown, P.J. Hughes, K. Merrit, "In vitro studies of fretting corrosion of orthopaedic materials", Journal of Orthopaedic Research, Vol. 6, pp. 572-579, 1988.
[6] D.W. Hoeppner, V. Chandrasekaran, "Fretting in orthopaedic implants: a review", Wear , Vol. 173, pp.189-197, 1994.
[7] L.M. Rabbe, J. Rieu, A. Lopez, P. Combrade, "Fretting deterioration of orthopaedic implant materials: search for solution", Clinical Materials, Vol. 15, pp.221-226, 1994.
[8] M.H. Zhu, Z.B. Cai, W. Li, H.Y. Yu, Z.R. Zhou, "Fretting in prosthetic devices related to human body", Tribology International, Vol. 42, pp. 1360-1364, 2009.
[9] P.A. Lilley, P.S. Walker, G.W. Blunn, "Wear of titanium by soft tissue", in: Transactions of the 4th Word Biomaterials Congress, Berlin, 1992, pp. 227-230.
[10] S. Fayeulle, "Tribological behavior of nitrogen implanted materials", Wear, Vol.107, pp.61-70, 1986.
[11] I. J. Polmear, Light Alloys, Arnold, London, 1981.
[12] F. Yildiz, A. F. Yetim, A. Alsaran, I. Efeoglu, "Wear and corrosion behaviour of various surface treated medical grade titanium alloy in biosimulated environment", Wear, Vol.267, pp.695-701, 2009.
[13] M. Long, H. J. Rack, "Titanium alloys in total joint replacementÔÇö a materials science perspective, Biomaterials, Vol. 19, pp.1621-1639, 1998.
[14] M. Geetha, A. K. Singh, R. Asokamani, A. K. Gogia, "Ti based biomaterials, the ultimate choice for orthopaedic implantsÔÇöa review, Prog. Mater. Sci., Vol. 54, pp.397-425, 2009.
[15] A. Choubey, B. Basu, R. Balasubramaniam, "Tribological behaviour of Ti-based alloys in simulated body fluid solution at fretting contacts, Mater. Sci. Eng. A, Vol. 379, pp.234-239, 2004.
[16] Y.L. Hao, M. Niinomi, D. Kuroda, F. Fukunaga, Y.L. Zhou, R. Yang, A. Suzuki, "Young modulus and mechanical properties of Ti-29Nb-13Ta- 4.6Zr in relation to ╬▒" martensite", Metall. Mater. Trans. A, Vol. 33, pp.3137-3144, 2002.
[17] H. G¨ulery¨uz, H. Cimeno˘glu," Effect of thermal oxidation on corrosion and corrosion-wear behavior of a Ti-6Al-4V alloy", Biomaterials, Vol. 25, pp.3325-3333, 2004.
[18] M. Niinomi, D. Kuroda, K.I. Fukunaga, M. Morinaga, Y. Kato, T. Yashiro, A. Suzuki, "Corrosion wear fracture of new β type biomedical titanium alloys", Mater. Sci. Eng. A, Vol. 263, pp.193-199, 1999.
[19] J. L. Gilbert, C. A. Buckley, E. P. Lautenschlager, "Titanium oxide film fracture and repassivation: The effect of potential, pH and aeration", In: S. A. Brown, J. E. Lemons, editors, Medical applications of titanium and its alloys, the material and biological issues, ASTM STP 1272. Philadelphia: ASTM, 1996. p. 199-214.
[20] J. Komotori, B. J. Lee, H. Dong, P. A. Dearnley, "Corrosion response of surface engineered titanium alloys damaged by prior abrasion", Wear, Vol.88-98, pp.1-11, 2001.
[21] F. Galliano, E. Galvanetto, S. Mischler, D. Landolt, "Tribocorrosion behavior of plasma nitrided Ti-6Al-4V alloy in neutral NaCl solution", Surf Coat Technol, Vol.145, pp.121-131, 2001.
[22] N. J. Hallab, S. Anderson, T. Stafford, T. Glant, J. J. Jacobs, "Lymphocyte responses in patients with total hip arthroplasty", J Orthop Res, Vol.23, no.2, pp.384-391, 2005.
[23] T. Yamamoto, N. Kobayashi, K. Maruyama, M. Nakazawa, "Fretting fatigue properties of Ti-6Al-4V alloy in pseudo-body fluid and evaluation of biocompatibility by cell culture method", J. Japan. Inst. Metals, Vol. 59, no.4, pp. 463-470, 1995.
[24] P. Kovacs, J. A. Davidson, "Chemical and electrochemical aspects of biocompatibility of titanium and its alloys", In: S. A. Brown, J. E. Lemons, editors, Medical applications of titanium and its alloys: the material and biological issues, ASTM STP 1272. Philadelphia: ASTM, pp. 163-77, 1996.
[25] M. Niinomi, "Mechanical properties of biomedical titanium alloys", Mater. Sci. Eng. A, Vol. 243, pp.231-236, 1998.
[26] G. Manivasagam, U.K. Mudali, R. Asokamani, B. Raj, "Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices", Corros. Rev., Vol. 21, pp.125-159, 2003.
[27] S.J. Li, R. Yang, S. Li, Y.L. Hao, Y.Y. Cui, M. Niinomi, Z.X. Guo, Wear characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V alloys for biomedical applications, Wear 257 (2004) 869-876.
[28] G. Lutjering and J. Williams, Titanium: Engineering materials and processes, 2nd edition, New York, Springer-Verlag, 2003.
[29] C. Leyens, M. Peters, Titanium and Titanium Alloys - Fundamentals and Applications, KgaA: Weinheim, Germany, WILEY - VCH Verlag GmbH & Co, 2003.
[30] M. Donachie, Introduction to Titanium and Titanium Alloys, Source Book. ASM International, 1982.
[31] J. William, J. Chesnutt, Titanium Alloys: Thermomechanical Treatment, in Encyclopedia of Materials Science and Engineering, M.B. Bever, Editor, Pergamon Press. USA, 1986.
[32] J. Matthew. J. Donachie, Titanium A Technical Guide, 2nd edition, Ohio, USA: ASM International, Materials Park, 2000.
[33] P.J. Bania, in: D. Eylon, R.R. Boyer, D.A. Koss (Eds.), Titanium Alloys in the 1990-s, The Mineral, Metals & Materials Society, Warrendale, PA, 1993, pp. 3-14.
[34] R.W. Schutz, in: D. Eylon, R.R. Boyer, D.A. Koss (Eds.), Beta Titanium Alloys in the 1990-s, The Mineral, Metals & Materials Society, Warrendale, PA, 1993, pp. 75-91.
[35] D.M. Gordina, T. Glorianta, G. Nemtoib, "Synthesis, structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial", Mater. Lett., Vol. 59, pp.2959, 2005.
[36] M. A. Khan, R.L. Williams, and D.F. Williams, "The Corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions", Biomaterials, Vol. 20, pp.631-637, 1999.
[37] K.L. Wapner, "Implications of metallic corrosion in total knee arthroplasty", Clin. Orthop. Relat. Res., Vol. 271, p.12-20, 1991.
[38] S. Tamilselvi, V. Raman, and N. Rajendran, "Corrosion behaviour of Ti- 6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy", Electrochim. Acta, Vol. 52, p.839, 2006.
[39] Y. Okazaki, Y. Ito, T. Tateishi, A. Ito, "Effect of heat treatment on microstructure and mechanical properties of new titanium alloys for surgical implantation", J 834 Jpn Inst Met, Vol. 59, pp.108-115, 1995.
[40] CRM. Afonso, GT. Aleixo, AJ. Ramirez, R. Caram, "Influence of cooling rate on microstructure of Ti-Nb alloy for orthopedic implants", Mater Sci Eng C, Vol.889, pp.908-913, 2007.
[41] Y. Al-Zain, HY. Kim, H. Hosoda, TH. Nam, S. Miyazaki, "Shape memory properties of Ti-Nb-Mo biomedical alloys", Acta Mater, Vol.58, pp.4212-4223, 2010.
[42] D. Ping, Y. Mitarai, F. Yin, "Microstructure and shape memory behavior of a Ti- 30Nb-3Pd alloy", Scripta Mater, Vol.52, pp.1287-1291, 2005.
[43] Q. Li, M. Niinomi, M. Nakai, Z. Cui, S. Zhu, X. Yang , "Improvements in the super-elasticity and change in deformation mode of b-type TiNb24Zr2 alloys caused by aging treatments", Metall Mater Trans A, Vol.42, pp.2843-2849, 2011.
[44] K. Miura, N. Yamada, S. Hanada, TK. Jung, E. Itoi, "The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young-s modulus", Acta Biomater, Vol.7, pp.2320-2326, 2011.
[45] Z. Guo, J. Fu, YQ. Zhang, YY. Hu, ZG. Wu, L. Shi, M. Sha, SJ. Li, YL. Hao, R. Yang, "Early effect of Ti-24Nb-4Zr-7.9Sn intramedullary nails on fractured bone", Mater Sci Eng C, Vol.29, pp.963-968, 2009.
[46] WF. Cui, AH. Guo, "Microstructure and properties of biomedical TiNbZrFe β-titanium alloy under aging conditions", Mater Sci Eng A, Vol.527, pp.258-262, 2009.
[47] J. M├ílek, JF. Hnilica, J. Vesely╦å, B. Smola, S. Bartakova, J. Vanék, "The influence of chemical composition and thermo-mechanical treatment on Ti-Nb-Ta alloys", Mater Des, Vol.35, pp.731-740, 2012.
[48] Q. Wei, L. Wang, Y. Fu, J. Qin, W. Lu, D. Zhang, " Influence of oxygen content on microstructure and mechanical properties of Ti-Nb-Ta-Zr alloy, Mater Des, Vol.32, pp.2934-2939, 2011.
[49] LD. Zardiackas, DW. Mitchell, JA. Disegi, "Characterization of Ti- 15Mo beta titanium alloy for orthopedic implant", In: Brown SA, Lemons JE, editors, Medical applications of titanium and its alloys, ASTM STP 1272. West Conshohocken, PA: ASTM International, pp. 60-75, 1996.
[50] DP. Cao, "Mechanical and electrochemical characterization of Ti- 12Mo-5Zr alloy for biomedical application", J. Alloys Compd, Vol.509, pp.8235-8238, 2011.
[51] KK. Wang, LJ. Gustavson, JH. Dumbleton, "Microstructure and properties of a new beta titanium alloy, Ti-12Mo-6Zr-2Fe, developed for surgical implants", In: Brown SA, Lemons JE, editors, Medical applications of titanium and its alloys, ASTMSTP 1272.West Conshohocken, PA: ASTM International, pp.76-87, 1996.
[52] D. Kuroda, H. Kawasaki, S. Hiromoto, T. Hanawa, "Development of new Ti-Fe-Ta and Ti-Fe-Ta-Zr system alloys for biomedical applications", Mater Sci Eng C, Vol.25, pp.312-320, 2005.
[53] Ljerka Slokar, Tanja Matkovic', Prosper Matkovic', "Alloy design and property evaluation of new Ti-Cr-Nb alloys", Materials and Design, Vol.33, pp.26-30, 2012.
[54] Y. Kasano, T. Inamura, H. Kanetaka, S. Miyazaki, H. Hosoda, "Phase constitution and mechanical properties of Ti-(Cr, Mn)-Sn biomedical alloys", Mater Sci Forum, Vol.654-656, pp.2118-2121, 2010.
[55] Yu Zhen-tao, Zheng Yu-feng, Niu Jin-long, Huangfu Qiang, Zhang Yafeng, Yu Sen, "Microstructure and wear resistance of Ti-3Zr-2Sn-3Mo- 15Nb (TLM) alloy", Trans Nonferrous Met.Soc.China, Vol.17, pp.495- 499, 2007.
[56] E. Eisenbarth, Velten D, Muller M, Thull R, Breme J. Biocompatibility of β stabilizing elements of titanium alloys. Biomaterials 2004(25):5705.
[57] P. Majumdar, S. B. Singh, M. Chakraborty, "Wear response of heattreated Ti-13Zr-13Nb alloy in dry condition and simulated body fluid", Wear, Vol.264, pp.1015-1025, 2008.
[58] I. Cvijovic'-Alagic', S. Mitrovic', Z. Cvijovic', Ð. Veljovic', M. Babic, M. Rakin, "Influence of the heat treatment on the tribological characteristics of the Ti-based alloy for biomedical applications, Tribology in industry, Vol.31, no.3&4, 2009.
[59] I. Cvijovic'-Alagic', Z. Cvijovic', S. Mitrovic', M. Rakin , Ð. Veljovic', and M. Babic " Tribological behaviour of orthopaedic Ti-13Nb-13Zr and Ti-6Al-4V Alloys", Tribol Lett,Vol.40, pp.59-70, 2010.
[60] Valiev RZ, Langdon TG, " Principles of equal-channel angular pressing as a processing tool for grain refinement", Prog Mater Sci., Vol. 51, pp.881-981, 2006.
[61] PB. Berbon, M. Furukawa, Z. Horita, M. Nemoto, TG. Langdon, "Infl uence of pressing speed on microstructural development in equalchannel angular pressing", Metall Mater Trans, Vol.30A, pp.1989-1997, 1999.
[62] P. La, J. Ma, YT. Zhu, J. Yang, W. Liu, Q. Xue, RZ. Valiev, " Drysliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation", Acta Mater, Vol. 53, pp.5167-5173, 2005.