Modeling the Intricate Relationship Between miRNA Dysregulation and Breast Cancer Development
Authors: S. Sarabandi, M. Rostampour Vajari
Abstract:
Breast cancer is the most frequent form of cancer among women and the fifth-leading cause of cancer-related deaths. A common feature of cancer cells is their ability to survive and evade apoptosis. Understanding the mechanisms of these pathways and their regulatory factors can lead to the development of effective treatment strategies. In this study, we aim to model the effect of key miRNAs, which are significant regulatory factors in breast cancer. We designed a Petri net focusing on two crucial pathways: proliferation and apoptosis, and identified the role of miRNAs in these pathways. Our analysis indicates that the upregulation of miRNAs 99a and 372 can effectively increase apoptosis and decrease proliferation. Moreover, we demonstrate that miRNA-600, previously reported as a potential candidate for treatment, may not be a suitable target due to its dual activity in proliferation. Therefore, further research is required to investigate the potential of this miRNA in cancer treatment. Our model shows that a combination of miRNA upregulation and knockdown can efficiently influence key genes such as MDM2 and PTEN, leading to the activation of apoptosis in cancer cells. Ultimately, our model successfully simulates the connection between regulatory miRNAs and key genes in breast cancer.
Keywords: Breast cancer, microRNAs, bio-modeling, petri net.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24References:
[1] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE 1989, 77(4):541-580.
[2] Mattiuzzi C., Lippi G., Current cancer epidemiology. Journal of epidemiology and global health 2019, 9(4):217-222.
[3] Abolhasanzadeh N., Sarabandi S., Dehghan B., Karamad V., Avci C. B., Shademan B., Nourazarian A., Exploring the intricate relationship between miRNA dysregulation and breast cancer development: insights into the impact of environmental chemicals. Frontiers in Immunology 2024, 15:1333563.
[4] Matkovich S. J., Van Booven D. J., Eschenbacher W. H., Dorn G. W., RISC RNA sequencing for context-specific identification of in vivo microRNA targets. Circul Res 2011, 108(1):18-26.
[5] Shademan B., Avci C. B., Karamad V., Sogutlu F., Nourazarian A., MicroRNAs as a new target for Alzheimer's disease treatment. MicroRNA 2023, 12(1):3-12.
[6] Asl E. R., Sarabandi S., Shademan B., Dalvandi K., Nourazarian A., MicroRNA targeting: A novel therapeutic intervention for ovarian cancer. Biochemistry and Biophysics Reports 2023, 35:101519.
[7] Pekarek L., Torres-Carranza D., Fraile-Martinez O., García-Montero C., Pekarek T., Saez M. A., Rueda-Correa F., Pimentel-Martinez C., Guijarro L. G., Diaz-Pedrero R., An overview of the role of MicroRNAs on carcinogenesis: a focus on cell cycle, angiogenesis and metastasis. International Journal of Molecular Sciences 2023, 24(8):7268.
[8] Alimirah F., Peng X., Gupta A., Yuan L., Welsh J., Cleary M., Mehta R. G., Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells. Exp Cell Res 2016, 349(1):15-22.
[9] Jansson M., Damas N., Lees M., Jacobsen A., Lund A., miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2. Oncogene 2015, 34(15):1908-1918.
[10] Manivannan H. P., Veeraraghavan V. P., Francis A. P., Identification of molecular targets of Trigonelline for treating breast cancer through network pharmacology and bioinformatics-based prediction. Mol Divers 2023:1-23.
[11] Carnero A., Blanco-Aparicio C., Renner O., Link W., Leal J. F., The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 2008, 8(3):187-198.
[12] Zhou S., Shen D., Wang Y., Gong L., Tang X., Yu B., Gu X., Ding F., Correction: microRNA-222 Targeting PTEN Promotes Neurite Outgrowth from Adult Dorsal Root Ganglion Neurons following Sciatic Nerve Transection. Plos one 2012, 7(9).
[13] Wang N., Zhu C., Xu Y., Qian W., Zheng M., Negative regulation of PTEN by MicroRNA‐221 and its association with drug resistance and cellular senescence in lung cancer cells. BioMed Research International 2018, 2018(1):7908950.
[14] Mohammaddoust S., Sadeghizadeh M., Mir-183 functions as an oncogene via decreasing PTEN in breast cancer cells. Scientific Reports 2023, 13(1):8086.
[15] Wang W. M., Lu G., Su X. W., Lyu H., Poon W. S., MicroRNA-182 regulates neurite outgrowth involving the PTEN/AKT pathway. Frontiers in cellular neuroscience 2017, 11:96.
[16] Gao H., Zhong F., Xie J., Peng J., Han Z., PTTG promotes invasion in human breast cancer cell line by upregulating EMMPRIN via FAK/Akt/mTOR signaling. American journal of cancer research 2016, 6(2):425.
[17] Hu Z. G., Zheng C. W., Su H. Z., Zeng Y. L., Lin C. J., Guo Z. Y., Zhong F. D., Yuan G. D., He S. Q., MicroRNA‐329‐mediated PTTG1 downregulation inactivates the MAPK signaling pathway to suppress cell proliferation and tumor growth in cholangiocarcinoma. J Cell Biochem 2019, 120(6):9964-9978.
[18] Ascione C. M., Napolitano F., Esposito D., Servetto A., Belli S., Santaniello A., Scagliarini S., Crocetto F., Bianco R., Formisano L., Role of FGFR3 in bladder cancer: Treatment landscape and future challenges. Cancer Treatment Reviews 2023, 115:102530.
[19] Rutherford E. L., Lowery L. A., Exploring the developmental mechanisms underlying Wolf-Hirschhorn Syndrome: Evidence for defects in neural crest cell migration. Dev Biol 2016, 420(1):1-10.
[20] Sayed D., Rane S., Lypowy J., He M., Chen I.-Y., Vashistha H., Yan L., Malhotra A., Vatner D., Abdellatif M., MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Molecular biology of the cell 2008, 19(8):3272-3282.
[21] Hu T., Chong Y., Lu S., Wang R., Qin H., Silva J., Kitamura E., Chang C.-S., Hawthorn L., Cowell J. K., miR-339 promotes development of stem cell leukemia/lymphoma syndrome via downregulation of the BCL2L11 and BAX proapoptotic genes. Cancer Res 2018, 78(13):3522-3531.
[22] Ahmadian Elmi M., Motamed N., Picard D., Proteomic Analyses of the G Protein-Coupled Estrogen Receptor GPER1 Reveal Constitutive Links to Endoplasmic Reticulum, Glycosylation, Trafficking, and Calcium Signaling. Cells 2023, 12(21):2571.
[23] Kim H. J., Bar-Sagi D., Modulation of signalling by Sprouty: a developing story. Nature reviews Molecular cell biology 2004, 5(6):441-450.
[24] Wang H., Guo M., Wei H., Chen Y., Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal transduction and targeted therapy 2023, 8(1):92.
[25] Nag S., Qin J., Srivenugopal K. S., Wang M., Zhang R., The MDM2-p53 pathway revisited. Journal of biomedical research 2013, 27(4):254.
[26] Haupt S., Vijayakumaran R., Miranda P. J., Burgess A., Lim E., Haupt Y., The role of MDM2 and MDM4 in breast cancer development and prevention. Journal of molecular cell biology 2017, 9(1):53-61.
[27] Zimmerman S. M., Lin P. N., Souroullas G. P., Non-canonical functions of EZH2 in cancer. Frontiers in Oncology 2023, 13:1233953.
[28] Bugler J., Kinstrie R., Scott M. T., Vetrie D., Epigenetic reprogramming and emerging epigenetic therapies in CML. Frontiers in Cell and Developmental Biology 2019, 7:136.
[29] Zhao Q., Li D., Feng J., Jinsihan D., MiR‐600 mediates EZH2/RUNX3 signal axis to modulate breast cancer cell viability and sorafenib sensitivity. J Biochem Mol Toxicol 2024, 38(1):e23613.
[30] Zhang P., Zuo Z., Wu A., Shang W., Bi R., Jin Q., Wu J., Jiang L.: miR-600 inhibits cell proliferation, migration and invasion by targeting p53 in mutant p53-expressing human colorectal cancer cell lines. Oncology Letters 2017, 13(3):1789-1796.
[31] Juan A. H., Kumar R. M., Marx J. G., Young R. A., Sartorelli V., Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 2009, 36(1):61-74.
[32] Du L., Fakih M. G., Rosen S. T., Chen Y., SUMOylation of E2F1 regulates expression of EZH2. Cancer Res 2020, 80(19):4212-4223.
[33] Zhao Y. X., Liu H. C., Ying W. Y., Wang C. Y., Yu Y. J., Sun W. J., Liu J. F., microRNA-372 inhibits proliferation and induces apoptosis in human breast cancer cells by directly targeting E2F1. Molecular medicine reports 2017, 16(6):8069-8075.
[34] Carvalho, R. V., Verbeek, F. J., & Coelho, C. J. (2018). Bio-modeling using petri nets: a computational approach. In Theoretical and Applied Aspects of Systems Biology (pp. 3-26). Cham: Springer International Publishing.