Modeling of the Energy Storage Device: LTC3588
Authors: Mojtaba Ghodsi, Morteza Mohammadzaheri, Payam Soltani
Abstract:
This study provides a detailed analysis of the LTC3588 as a low-power energy storage model, focusing on its internal circuitry and energy harvesting capabilities. The study highlights the relationship between the input and output capacitors and the behavior of the output voltage, particularly its rise time. It was found that increasing the input capacitance (Cin) from 1 µF to 220 µF reduces oscillations in the output voltage (Vout) and slows the rate of increase in the input voltage, demonstrating the impact of input capacitance on voltage dynamics. Furthermore, the study revealed that smaller output capacitors (Cout) result in fewer voltage jumps required to reach the target output voltage of 3.2 V, suggesting that a smaller Cout improves voltage regulation speed and stability. The study concludes that both input and output capacitors play a critical role in the LTC3588's performance. Optimizing these capacitors is crucial for efficient energy storage and harvesting in applications requiring minimal power consumption.
Keywords: LTC3588, energy storage, Zener Diode, LED.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29References:
[1] M. Ostadi, L. Bromberg, D. R. Cohn, and E. Gençer, ‘Flexible methanol production process using biomass/municipal solid waste and hydrogen produced by electrolysis and natural gas pyrolysis’, Fuel, vol. 334, p. 126697, Feb. 2023, doi: 10.1016/j.fuel.2022.126697.
[2] F. Odoi-Yorke, T. F. Adu, B. C. Ampimah, and L. Atepor, ‘Techno-economic assessment of a utility-scale wind power plant in Ghana’, Energy Convers. Manag. X, vol. 18, p. 100375, Apr. 2023, doi: 10.1016/j.ecmx.2023.100375.
[3] M. Ghodsi, ‘Optimization of Mover Acceleration in DC Tubular Linear Direct-Drive Machine Using Response Surface Method’, Int. Rev. Electr. Eng. IREE, vol. 10, no. 4, Art. no. 4, Aug. 2015, doi: 10.15866/iree.v10i4.6274.
[4] M. Dadkhah, Y. Hojjat, J. U. Jeon, M. Ghodsi, and M. Modabberifar, ‘Voltage-induction synchronous electrostatic motor’, Int. J. Adv. Manuf. Technol., vol. 77, no. 1, pp. 145–164, Mar. 2015, doi: 10.1007/s00170-014-6385-3.
[5] M. Ghodsi, M. Mohammadzaheri, and P. Soltani, ‘Analysis of Cantilever Triple-Layer Piezoelectric Harvester (CTLPH): Non-Resonance Applications’, Energies, vol. 16, no. 7, p. 3129, Mar. 2023, doi: 10.3390/en16073129.
[6] M. Ghodsi, H. Ziaiefar, M. Mohammadzaheri, and A. Al-Yahmedi, ‘Modeling and characterization of permendur cantilever beam for energy harvesting’, Energy, vol. 176, pp. 561–569, Jun. 2019, doi: 10.1016/j.energy.2019.04.019.
[7] S. Talebian, Y. Hojjat, M. Ghodsi, M. R. Karafi, and S. Mirzamohammadi, ‘A combined Preisach–Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D’, J. Magn. Magn. Mater., vol. 396, pp. 38–47, Dec. 2015, doi: 10.1016/j.jmmm.2015.08.006.
[8] L.-C. Zhao et al., ‘Mechanical intelligent wave energy harvesting and self-powered marine environment monitoring’, Nano Energy, vol. 108, p. 108222, Apr. 2023, doi: 10.1016/j.nanoen.2023.108222.
[9] I. S. Lacerda et al., ‘Comparative Analysis of Piezoelectric Transducers for Low-Power Systems: A Focus on Vibration Energy Harvesting’, Appl. Sci., vol. 14, no. 20, Art. no. 20, Jan. 2024, doi: 10.3390/app14209451.
[10] S. Rao, S. Bhat, A. K. Bhat, and B. Kabbala Basavarajappa, ‘Design, Development and Analysis of Energy-Harvesting System’, J. Vib. Eng. Technol., vol. 12, no. 3, pp. 4335–4343, Mar. 2024, doi: 10.1007/s42417-023-01122-0.
[11] G. Muscalu et al., ‘Piezoelectric MEMS Energy Harvester for Low-Power Applications’, Electronics, vol. 13, no. 11, Art. no. 11, Jan. 2024, doi: 10.3390/electronics13112087.
[12] S. Gao, X. Luo, H. Wei, R. Wang, X. Chen, and J. Zhang, ‘Wind-driven suspended triboelectric-electromagnetic hybrid generator with vibration elimination for environmental monitoring in the high-voltage power transmission line’, Nano Energy, vol. 128, p. 109831, Sep. 2024, doi: 10.1016/j.nanoen.2024.109831.
[13] S. Gao et al., ‘Self-powered system by a suspension structure-based triboelectric-electromagnetic-piezoelectric hybrid generator for unifying wind energy and vibration harvesting with vibration attenuation function’, Nano Energy, vol. 122, p. 109323, Apr. 2024, doi: 10.1016/j.nanoen.2024.109323.
[14] C. Xu et al., ‘Self-Supplying Photovoltaic–Hygroelectric Coupling System Powering Internet of Things Sensors’, ACS Omega, vol. 9, no. 41, pp. 42602–42611, Oct. 2024, doi: 10.1021/acsomega.4c07849.
[15] A. Bharathi Sankar Ammaiyappan, R. Seyezhai, M. Someswaran, and M. Abinanthan Ram, ‘Piezoelectric driven self-powered supercapacitor for wearable device applications’, Mater. Today Proc., Sep. 2023, doi: 10.1016/j.matpr.2023.09.102.