Distinct Method to Measure the Quality of 2D Image Compression Techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33361
Distinct Method to Measure the Quality of 2D Image Compression Techniques

Authors: Mohammed H. Rasheed, Hussein Nadhem Fadhel, Mohammed M. Siddeq

Abstract:

In this paper, we presented tools for evaluating image quality that effectively align with human perception, emphasizing their usefulness in assessing the visual quality of images. These tools offer quantitative metrics to facilitate the comparison of various image compression algorithms. Specifically, we propose two metrics designed to measure the quality of decompressed images. These metrics utilize combined data (CD) derived from both the original and decompressed images to deliver accurate assessments. By comparing the results of our proposed metrics with widely used standards such as Peak Signal-to-Noise Ratio (PSNR) and Root Mean Square Error (RMSE), we demonstrate that our approach provides a closer match to human visual perception of image quality. This alignment underscores the practical application of the proposed metrics in scenarios requiring subjective evaluation accuracy.

Keywords: RMSE, Root Mean Square Error, PSNR, Peak Signal-to-Noise Ratio, image quality metrics, image compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46

References:


[1] K. Sayood. Introduction to Data Compression, 2nd edition, Academic Press, Morgan Kaufman Publishers. 2001.
[2] M. Siddeq, "Using Two Levels DWT with Limited Sequential Search Algorithm for Image Compression," Journal of Signal and Information Processing, Vol. 3 No. 1, 2012, pp. 51-62. doi: 10.4236/jsip.2012.31008.
[3] M. M. Siddeq, G. Al-Khafaji, (2013) Applied Minimize-Matrix-Size Algorithm on the Transformed images by DCT and DWT used for image Compression, International Journal of Computer Applications, Vol.70, No. 15.
[4] M. M. Siddeq and Rodrigues, Marcos (2015). Applied sequential-search algorithm for compression-encryption of high-resolution structured light 3D data. In: Blashki, Katherine and XIAO, Yingcai, (eds.) MCCSIS: Multi-conference on Computer Science and Information Systems 2015. IADIS Press, 195-202.
[5] Siddeq, M. M., Rodrigues, M. A. A Novel Image Compression Algorithm for High Resolution 3D Reconstruction. 3D Res 5, 7 (2014). https://doi.org/10.1007/s13319-014-0007-6
[6] Siddeq, M.M., Rodrigues, M.A. A novel high-frequency encoding algorithm for image compression. EURASIP Journal of Advanced and Signal Process. 2017, 26 (2017). https://doi.org/10.1186/s13634-017-0461-4.
[7] Rasheed, Mohammed H, Salih, Omar M, Siddeq, Mohammed M and Rodrigues, Marcos (2020). Image compression based on 2D Discrete Fourier Transform and matrix minimization algorithm. Array, 6 (100024).
[8] Abdullah A. Hussain, Ghadah K. AL-Khafaji and Mohammed M. Siddeq. Developed JPEG Algorithm Applied in Image Compression. IOP Conference Series: Materials Science and Engineering, Volume 928, 2nd International Scientific Conference of Al-Ayen University (ISCAU-2020) 15-16 July 2020.
[9] Siddeq, M. M., Rodrigues, M. A. DCT and DST Based Image Compression for 3D Reconstruction. 3D Res 5, 8 (2017). https://doi.org/10.1007/s13319-017-0116-0.
[10] AL-Hadithy, S.S., "Adaptive 1-d polynomial coding of c621 base for image compression", Turkish Journal of Computer and Mathematics Education (TURCOMAT), Vol. 12, No. 13, (2021), 5720-5731. https://www.turcomat.org/index.php/turkbilmat/article/view/9823
[11] Setyaningsih, E. and Harjoko, A., "Survey of hybrid image compression techniques", International Journal of Electrical and Computer Engineering, Vol. 7, No. 4, (2017), 2206. doi: 10.11591/ijece.v7i4.pp2206-2214.
[12] Kotha, H.D., Tummanapally, M. and Upadhyay, V.K., "Review on lossless compression techniques", in Journal of physics: conference series, IOP Publishing. Vol. 1228, (2019), 012007.
[13] Al-Khafaji¹, G. and Bassim, M., "Color image compression of inter-prediction base", International Journal of Computer Science and Mobile Computing, Vol. 8, No. 11, (2019), 65-70.
[14] Garg, Garima and Kumar, Raman, Analysis of Different Image Compression Techniques: A Review (February 10, 2022). Available at SSRN: https://ssrn.com/abstract = 4031725 or http://dx.doi.org/10.2139/ssrn.4031725
[15] DeVore, R. A., Jawerth, B., & Lucier, B. J. (1992). Image compression through wavelet transform coding. IEEE Transactions on information theory, 38(2), 719-746.
[16] Nan, Sx., Feng, Xf., Wu, Yf. et al. Remote sensing image compression and encryption based on block compressive sensing and 2D-LCCCM. Nonlinear Dyn 108, 2705–2729 (2022). https://doi.org/10.1007/s11071-022-07335-4.
[17] Liu, H., Zhao, B., Huang, L.: A remote-sensing image encryption scheme using DNA bases probability and two-dimensional logistic map. IEEE Access 7, 65450–65459 (2019).
[18] Huang, W., Jiang, D., An, Y., Liu, L., Wang, X.: A novel double-image encryption algorithm based on Rossler hyperchaotic system and compressive sensing. IEEE Access 9, 41704–41716 (2021).
[19] Wang, X.Q., Zhang, H., Sun, Y.J., Wang, X.Y.: A Plaintext-related image encryption algorithm based on compressive sensing and a novel hyperchaotic system. Int. J. Bifurc. Chaos 31(2), 5128–5143 (2021).
[20] M. Burrows and D.J. Wheeler, A Block-Sorting Lossless Data Compression Algorithm, Technical report 124, Digital Equipment Corporation, Palo Alto CA, 1994.
[21] T.M. Cover, Enumerative source coding, IEEE Trans. Inf. Theory, IT-19, 73–77, 1973.
[22] V. Dai and A. Zakhor, Lossless layout compression for maskless lithography systems, Emerging Lithographic Technologies IV, Proceedings of the SPIE, Vol. 3997, 2000, pp. 467–477.
[23] J. Ziv and A. Lempel,A universal algorithm for sequential data compression, IEEE Trans. Inf. Theory, IT-23, 337–343, 1977.
[24] R. C. Gonzales, “Digital Image Processing”, 2nd Edition, Prentice Hall. ISBN:0-201-18075, 2002.
[25] R. C. Gonzalez & R. E. Woods & S. L. Eddins “Digital Image Processing Using MATLAB”, Prentice Hall, ISBN 0-13-008519-7,2004.