Geochemistry of Silt Size Fraction of the Beach Sands Along the Coast Between Al Kuwifia and Tolmeita, Northeast Libya
Authors: Basem A. El Werfalli, Osama R. Shaltamia, Ragab M. Al Alwany
Abstract:
The present work aims to characterize the geochemistry of the beach sands along the Mediterranean Coast from Al Kuwifia to Tolmeita, Northeast Libya. The major oxides CaO and MgO are the main constituents of the carbonate minerals; calcite and aragonite. SiO2 is mainly in the form of quartz. Sometimes a high quotient of SiO2 together with the oxides; Al2O3, K2O and partly of Na2O, TiO2 and Fe2O3 are essentially allocated within the structure of the feldspars. Part of Na2O and the content of Cl belong mainly to halite. Part of Fe2O3 and TiO2 may be accommodated as iron oxyhydroxides. Part of CaO and the content of SO3 are allotted within the gypsum structure. Ba, Sr, Th, U and Rare Earth Elements (REE) are basically controlled by the carbonate fraction, while Cu, Zn, V and Cr are strongly correlated with Al2O3.
Keywords: Geochemistry, major oxides, Al Kuwifia, Tolmeita.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33References:
[1] Abu El-Ella, N. A. (2006): Sedimentological, mineralogical and geomorphological studies on the Quaternary sediments of coastal area, W. Tripoli, Libya. PH.D. Thesis. Cairo Univ. Cairo, Egypt.
[2] Anderson, D. (2003): Introduction to heavy metal monitoring. Natural Environmental Research Council. CEH. 1p.
[3] Asiedu, D. K.; Suzuki, S.; Nogami, K. and Shibata, T. (2000): Geochemistry of Lower Cretaceous sediments, Inner Zone of Southwest Japan: Constraints on provenance and tectonic environment. Geochemical Journal; 34: 155-173.
[4] Bopp, R. F.; Simpson, H. J. and Chillrud, S. N. (1993): Sediment-derived chronologies of persistent contaminants in Jamaica Bay, New York. Estuaries; 16 (3B): 608–616.
[5] Callahan, M. A.; Slimak, M. W. and Gable, N. W. (1979): Water-related fate of 129 priority pollutants. Washington, DC: U.S. Environmental Protection Agency, Office of Water Planning and Standards. EPA-440/4-79-029a.
[6] Carranza-Edwards, A.; Centeno-García, L.; Rosales-Hoz, L. and Lozano-Santa Cruz, R. (2001): Provenance of beach gray sands from western México: Journal of South American Earth Sciences; 14: 291-301.
[7] Chen, J.; Wang, F. and Chen, J. (1994): Relation of aquatic particulate grain size to heavy metals concentrations in Eastern Chinese Rivers. Acta Scientiae Circumstantiae; 14: 419-425.
[8] Cox, R.; Low, D. R. and Cullers, R. L. (1995): The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta; 59: 2919–2940.
[9] Condie, K. C.; Boryta, M. D.; Liu, J. and Quian, X., (1992): The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulitic belt in the North China Craton: Precambrian Research; 59(3-4), 207-223.
[10] Dupre, B.; Gaillardet, J.; Rousseau, D. and Allegre, C. J. (1996): Major and trace element of river-born material: the Congo basin. Geochim. Cosmochim. Acta; 60: 1301–1321.
[11] Elderfield, H. and Greaves, M. J. (1982): The rare earth elements in seawater. Nature; 296: 214-219.
[12] Fedo, C. M.; Eriksson, K. and Krogstad, E. J. (1996): Geochemistry of shale from the Archean (~ 3.0 Ga) Buhwa Greenstone belt, Zimbabwe: Implications for provenance and source area weathering. Geochimica et Cosmochimica Acta; 60(10): 1751-1763.
[13] Froelich, P. N.; Bender, M. L; Luedtke, N. A.; Heath, G. R. and Devries, T. (1982): The marine phosphorus cycle. Am. J. Sci.; 282: 474-511.
[14] Gandhi, M. S. and Raja, M. (2014): Heavy mineral distribution and geochemical studies of coastal sediments between Besant Nagar and Marakkanam, Tamil Nadu, India. Journal of Radiation Research and Applied Sciences; 7: 256-268.
[15] Greaves, M. J.; Elderfield, H. and Sholkovitz, E. R. (1999): Aeolian sources of rare earth elements to the Western Pacific Ocean. Marine Chemistry; 68: 31-38.
[16] Hanley, M. E.; Hoggart, S. P. G.; Simmonds, D. J.; Bichot, A.; Colangelo, M. A.; Bozzeda, F.; Heurtefeux, H.; Ondiviela, B.; Ostrowski, R.; Recio, M.; Trude, R.; Zawadzka-Kahlau, E. and Thompson, R. C. (2014): Shifting sands? Coastal protection by sand banks, beaches and dunes. Coastal Engineering; 87: 136-146.
[17] Jones, B. and Manning, D. C. (1994): Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones: Chemical Geology; 111(1-4): 111-129.
[18] Kawabe, I., Kitahara, Y. and Naito, K. (1991): Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in Pre-Cenozoic limestones. Geochem. J.; 25: 31–41.
[19] Lopez, J. M. G.; Bauluz, B.; Fernández-Nieto, C. and Oliete, A. Y. (2005): Factors controlling the trace-element distribution in fine-grained rocks: the Albian kaoliniterich deposits of the Oliete Basin (NE Spain). Chemical Geology; 214 (1-2, 3): 1-19.
[20] Macquaker, J. H. S.; Curtis, C. D. and Coleman, M. L. (1997): The role of iron in mudstone diagenesis: comparison of Kimmeridge Clay Formation mudstones from onshore and offshore (UKCS) localities. J. Sedim. Res.; 67: 871–878.
[21] McLennan, S.M.; Hemming, S., McDaniel, D.K. and Hanson,G.N. (1993): Geochemical approaches to sedimentation, provenance, and tectonics, in Johnson, M.J.,Basu,A. (eds.),Processes Controlling the Composition of Clastic Sediments: Geological Society of America, Special Paper; 284: 21-40.
[22] Murray, R.W., Ten Brink, M. R. B., Gerlach, D. C., Russ III, G. P. and Jones, D.L. (1991b): Rare earth, major and trace elements in chert from the Franciscan complex and Monterey Group, California: Assessing REE sources to fine grained marine sediments. Geochimica et Cosmochimica Acta; 55: 1875-1895.
[23] Nath, B. N., Bau, M., Ramlingeswara-Rao, B. and Rao, C. M., (1997): Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochimica et Cosmochimica Acta; 61: 2375-2388.
[24] Nagarajan, R., Madhavaraju, J., Nagendra, R., Armstrong-Altrin, J. S. and Moutte, J. (2007): Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geológicas; 24 (2): 150-160.
[25] Nebsitt, H. W., Markovics, G. and Price, R. C. (1980): Chemical processes affecting alkalis and alkali earths during continental weathering. Geochim. Cosmochim. Acta; 44: 1659–1666.
[26] Nothdurft, L. D., Webb, G. E. and Kamber, B. S. (2004): Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta; 68: 263-283.
[27] Papadopoulos, A.; Christofides, G.; Pe-Piper, G.; Koroneos, A. and Papadopoulou, L. (2015): Geochemistry of beach sands from Sithonia Peninsula (Chalkidiki, Northern Greece). Mineralogy and Petrology; 109: 53-66.
[28] Piper, D. Z. (1974): Rare earth elements in the sedimentary cycle. Chemical Geology; 14: 285-304.
[29] Preda, M. and Cox, M.E. (2005): Chemical and mineralogical composition of marine sediments, and relation to their source and transport, Gulf of Carpentaria, Northern Australia. Journal of Marine Systems; 53: 169– 186.
[30] Quinby-Hunt, M.S.; Wilde, P. and Berry, W.B.N. (1991): The provenance of low-calcic black shales. Mineralium Deposita; 26: 113–121.
[31] Rollinson, H. R. (1993): Using geochemical data: evaluation, presentation and interpretation. Longman Group Ltd., 352p.
[32] Shaltami O. R. (2012): Mineral composition and environmental geochemistry of the beach sediments along the Mediterranean Coast from Benghazi to Bin Jawwad, Northeast Libya. PH.D. Thesis. Cairo Univ. Cairo, Egypt.
[33] Shaltami, O. R. (2013): Mineralogical and geochemical characteristics of the Al Hilal Formation, Ras Al Hilal Area, Al Jabal Al Akhdar, NE Libya. Scientific Benghazi University Journal; 1: 41-56.
[34] Suzumural, M. and Kamatani, A. (1995): Origin and distribution of inositol hexaphosphate in estuarine and coastal sediments. Limnol. Oceanogr; 40(7): 1254-1261.
[35] Taylor, S. R. and McLennan, S. M. (1985): The Continental Crust: its composition and evolution. Blackwell Scientific Publishers, Oxford.
[36] Thomson, J.; Crudeli, D.; De Lange, G. J.; Slomp, C. P.; Erba, E. and Corselli, C. (2004): Florisphaera profunda and the origin and diagenesis of carbonate phases in eastern Mediterranean sapropel units. Paleoceanography 9, PA3003, doi:10.1029/2003PA000976.
[37] Verma, S. P. (2005): Estadística Básica para el Manejo de Datos Experimentales: Aplicación en la Geoquímica (Geoguimiometría): México, D.F., Universidad Nacional Autónoma de México, 186pjon
[38] Weyer, S.; Munker, C.; Rehkomper, M.; and Mezger, K. (2002): Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS,Chem, Geol.; 187(3-4): 295-313.
[39] White, W. M. (2001): Geochemistry: An on-line textbook. John-Hopkins University Press, 700 p.
[40] Yang, S.; Jung, H. S. and Li, C. (2003): Two unique weathering regimes in the Changjiang and Huanghe drainage basins: geochemical evidence from river sediments. Sedimentary Geology; 164(1-2): 1-178.
[41] Zaghloul, M. N.; Reddad, H. and Critelli, S. (2009): Source area controls on the composition of beach and fluvial sands on the southern side of the Gibraltar Strait and Western Alboran Sea (Flysch Basin, Internal and External, Domains, Northern Rif.
[42] Zhang, J.; Amakawa, H. and Nozaki, Y. (1994): The comparative behaviors of yttrium and lanthanides in the seawater of the North Pacific, Geophys. Res. Lett.; 21: 2677–2680.
[43] Zhang, K., J. (2004): Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting. Earth and Planetary Science Letters; 229: 73-89.