Synthesis of Highly Stable Near-Infrared FAPbI3 Perovskite Doped with 5-AVA and Its Applications in Near-Infrared Light-Emitting Diodes for Bioimaging
Authors: Nasrud Din, Rai Muhammad Dawood Sultan, Fawad Saeed, Sajid Hussain, Premkumar Sellan, Qasim Khan, Wei Lei
Abstract:
The continuously increasing external quantum efficiencies of Perovskite light-emitting diodes (LEDs) have received significant interest in the scientific community. The need for monitoring and medical diagnostics has experienced a steady growth in recent years, primarily caused by older people and an increasing number of heart attacks, tumors, and cancer disorders among patients. The application of Perovskite near-infrared light-emitting diode (PeNIRLEDs) has exhibited considerable efficacy in bioimaging, particularly in the visualization and examination of blood arteries, blood clots, and tumors. PeNIRLEDs exhibit exciting potential in the field of blood vessel imaging because of their advantageous attributes, including improved depth penetration and less scattering in comparison to visible light. In this study, we synthesized FAPbI₃ Perovskite doped with different concentrations of 5-Aminovaleric acid (5-AVA) 1-6 mg. The incorporation of 5-AVA as a dopant during the FAPbI₃ Perovskite formation influences the FAPbI3 Perovskite’s structural and optical properties, improving its stability, photoluminescence efficiency, and charge transport characteristics. We found a resulting PL emission peak wavelength of 850 nm and bandwidth of 44 nm, along with a calculated quantum yield of 75%. The incorporation of 5-AVA-modified FAPbI₃ Perovskite into LEDs will show promising results, enhancing device efficiency, color purity, and stability. Making it suitable for various medical applications, including subcutaneous deep vein imaging, blood flow visualization, and tumor illumination.
Keywords: Perovskite light-emitting diodes, deep vein imaging, blood flow visualization, tumor illumination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39References:
[1] C. X. Bao, Z. L. Chen, Y. J. Fang, H. T. Wei, Y. H. Deng, X. Xiao, L. L. Li and J. S. Huang, Adv. Mater., 2017, 29, 1703209.
[2] W. Deng, X. J. Zhang, L. M. Huang, X. Z. Xu, L. Wang, J. C. Wang, Q. X. Shang, S. T. Lee and J. S. Jie, Adv. Mater., 2016, 28, 2201–2208.
[3] L. Gao, K. Zeng, J. S. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. S. He, H. S. Song, G. D. Niu and J. Tang, Nano Lett., 2016, 16, 7446–7454.
[4] Y. X. Zhang, Y. C. Liu, Z. Yang and S. Z. (Frank)Liu, J. Energy Chem., 2018, 27, 722–727.
[5] J. Ding, H. J. Fang, Z. P. Lian, J. W. Li, Q. R. Lv, L. D. Wang, J. L. Sun and Q. F. Yan, CrystEngComm, 2016, 18, 4405–4411.
[6] H. R. Wu, Z. S. Su, F. M. Jin, H. F. Zhao, W. L. Li and B. Chu, Org. Electron., 2018, 57, 206–210.
[7] Q. Q. Lin, A. Armin, P. Burn and P. Meredith, Laser Photonics Rev., 2016, 10, 1047–1053.
[8] J. Yu, J. Zheng, H. Y. Chen, N. Tian, L. Li, Y. M. Qu, Y. T. Huang, Y. X. Luo and W. Z. Tan, J. Mater. Chem. C, 2022, 10, 274–280.
[9] Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya and Y. Kanemitsu, Appl. Phys. Express, 2014, 7, 032302.
[10] J. Wang, S. Xiao, W. Qian, K. Zhang, J. Yu, X. W. Xu, G. P. Wang, S. Z. Zheng and S. Yang, Adv. Mater., 2021, 33, 2005557.
[11] S. Shrestha, R. Fischer, G. J. Matt, P. Feldner, T. Michel, A. Osvet, I. Levchuk, B. Merle, S. Golkar, H. Chen, S. F. Tedde, O. Schmidt and C. J. Brabec, Nat. Photonics, 2017, 11, 436–440.
[12] S. Wozny, M. Yang, A. M. Nardes, C. C. Mercado, S. Ferrere, M. O. Reese, W. Zhou, K. Zhu, Chemistry of Materials, 2015, 27,4814-4820, doi: 10.1021/acs.chemmater.5b01691.
[13] Y. Zhang, J. Wang, J. Xu, W. Chen, D. Zhu, W. Zheng, X. Bao, RSC Advances, 2016, 6, 79952-79957, doi:10.1039/c6ra15210d.
[14] M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, F. Teng, Scientific Reports, 2018, 8, 11157, doi: 10.1038/s41598-018-29147-6.
[15] R. Begum, X. Y. Chin, M. Li, B. Damodaran, T. C. Sum, S. Mhaisalkar, N. Mathews, Chemical Communications, 2019, 55,5451-5454, doi: 10.1039/c9cc01526d.
[16] Q. Han, S. H. Bae, P. Sun, Y. T. Hsieh, Y. M. Yang, Y. S. Rim,H. Zhao, Q. Chen, W. Shi, G. Li, Y. Yang, Advanced Materials, 2016, 28, 2253-2258, doi: 10.1002/adma.201505002.
[17] X. Guo, C. McCleese, W. Gao, M. Wang, L. Sang, C. Burda,Materials for Renewable and Sustainable Energy, 2016, 5, 17,doi: 10.1007/s40243-016-0081-1.
[18] T. Niu, J. Lu, M. C. Tang, D. Barrit, D. M. Smilgies, Z. Yang,J. Li, Y. Fan, T. Luo, I. Mc5-AVA lloch, A. Amassian, S. F. Liu, K.Zhao, Energy & Environmental Science, 2018, 11, 3358-3366,doi: 10.1039/c8ee02542h.
[19] Y. Zhou, J. Kwun, H. F. Garces, S. Pang, N. P. Padture, Chemical Communications, 2016, 52, 7273-7275, doi:10.1039/c6cc02086k.
[20] Z. Wang, Y. Zhou, S. Pang, Z. Xiao, J. Zhang, W. Chai, H.Xu, Z. Liu, N. P. Padture, G.cui, Chemistry of Materials, 2015, 27, 7149-7155, doi: 10.1021/acs.chemmater.5b03169.
[21] B. Slimi, M. Mollar, I. Ben Assaker, A. Kriaa, R. Chtourou, B. Marí, Monatshefte Für Chemie - Chemical Monthly, 2017, 148, 835-844, doi: 10.1007/s00706-017-1958-0.
[22] F. C. Hanusch, E. Wiesenmayer, E. Mankel, The Journal of Physical Chemistry Letters, 2014, 5, 2791-2795, doi: 10.1021/jz501237m.
[23] Y. Zhou, M. Yang, J. Kwun, O. S. Game, Y. Zhao, S. Pang, N. P. Padture, K. Zhu, Nanoscale, 2016, 8, 6265-6270, doi: 10.1039/c5nr06189j.
[24] M. I. Saidaminov, A. L. Abdelhady, G. Maculan, O. M. Bakr, Chemical Communications, 2015, 51, 17658-17661, doi:10.1039/c5cc06916e.