
 
 

 

 
Abstract—Aiming at the problem of low accuracy and 

susceptibility to cultural relic diseases in the generation of high-
resolution archaeology drawings by current image generation 
algorithms, an archaeology drawings generation algorithm based on a 
conditional generative adversarial network is proposed in this paper. 
An attention mechanism is added into the high-resolution image 
generation network as the backbone network, which enhances the line 
feature extraction capability and improves the accuracy of line drawing 
generation. A dual-branch parallel architecture consisting of two 
backbone networks is implemented, where the semantic translation 
branch extracts semantic features from orthophotographs of cultural 
relics, and the gradient screening branch extracts effective gradient 
features. Finally, the fusion fine-tuning module combines these two 
types of features to achieve the generation of high-quality and high-
resolution archaeology drawings. Experimental results on the self-
constructed archaeology drawings dataset of grotto temple statues 
show that the proposed algorithm outperforms current mainstream 
image generation algorithms in terms of pixel accuracy (PA), structural 
similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be 
used to assist in drawing archaeology drawings. 

 
Keywords—Archaeology drawings, digital heritage, image 

generation, deep learning. 

I. INTRODUCTION 

HE archaeology drawings, drawn to scale according to 
archaeological standards, uses simple lines to delineate the 

shape and contours of cultural relics [1]. Archaeology drawing 
is an indispensable part of archaeological work, and every 
complete archaeological excavation report needs to be 
accompanied by drawing data [2]. The archaeology drawings 
provide a direct representation of the form, stratification, and 
layout of cultural artifacts, effectively addressing the challenge 
of accurately conveying the abstract features of relics through 
words and photographs. Consequently, it stands as a crucial 
resource for both relic restoration efforts and academic inquiry. 
Currently, the creation of archaeology drawings relied 
primarily on manual measurements and drawings by trained 
professionals, which was inefficient and accompanied by the 
risk of secondary damage to artifacts. Consequently, there has 
been a continuous emergence of research on algorithms for 
generating archaeology drawings in recent years. For instance, 
Li [3] and Wang et al. [4] have proposed an algorithm for 
generating archaeology drawings based on the detection of 
ridge line features to extract the contour lines of artifact 3D 
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models. Liu [5] employs edge tangential flow fields and 
Gaussian difference filters to extract and generate line features, 
while Song [6] has introduced a cell ant colony algorithm for 
edge extraction across three-dimensional relic views, 
employing cubic B-spline curve fitting to produce the final relic 
drawings. The adoption of algorithmic methods for archaeology 
drawings generation represents a significant advancement over 
manual techniques, substantially enhancing the efficiency of 
relic workers and alleviating the burden of line drawing tasks. 
However, above methods still encounter challenges such as 
noise interference, loss of details, and the production of 
cluttered lines. 

The rapid advancement of data-driven approaches and deep 
learning techniques has led to the emergence of numerous 
algorithms in image generation. Notably, Convolutional Neural 
Networks (CNNs) [7] and Generative Adversarial Networks 
(GANs) [8] have achieved remarkable success in the field of 
image generation. Among these, GANs have particularly 
excelled in image generation tasks. Initially proposed by 
Goodfellow et al. [8], GANs have undergone significant 
enhancements in subsequent research efforts. Mehdi et al. [9] 
extended GANs by incorporating supervised information as 
conditional constraints, introducing Conditional Generative 
Adversarial Networks (CGANs). The optimization 
significantly alleviated the instability problems present in the 
training process of the original GANs. Based on CGANs, Isola 
et al. [10] proposed pix2pix, a conditional image translation 
network. Pix2pix utilizes a U-Net [11] structure in its generator 
to integrate shallow and deep features. Moreover, its 
discriminator employs a Markov discriminator (PatchGAN) 
[14] to discern the authenticity of image division regions, 
enhancing the network's ability to recognize local high-
frequency features while reducing model computation. 
Furthermore, deep learning algorithms have found effective 
application in the extraction of archaeology drawings. For 
instance, Peng et al. [12] combined the bidirectional cascade 
network (BDCN) [13] with U-Net to construct a hierarchical 
depth structure network for extracting archaeology drawings 
from murals. The application of these deep learning 
technologies has the potential to revolutionize the generation of 
archaeology drawings, offering new opportunities and inspiring 
future research directions. 

Deep learning methods hold promise for generating realistic 
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archaeology drawings, yet the existing methods often fail to 
deliver satisfactory results for complex scenes. There are two 
main challenges. Firstly, existing deep learning methods are 
limited in their ability to handle high-resolution images. Large 
artifacts such as caves and murals can only be processed by 
downsampling or cropping to reduce image resolution to meet 
the requirements of the model input, which often leads to loss 
of details in the output line drawings. Secondly, cultural 
heritage diseases disrupt the inherent features of artifacts. 
However, the existing methods have limited capabilities in 
extracting artifact line features, leading to poor quality in 
generated line drawings [12]. 

To address these problems, this paper presents a high-
resolution archaeology drawings generation algorithm based on 
CGAN. The algorithm enhances the feature extraction network 
by incorporating attention mechanism. Additionally, it 
introduces a gradient screening branch and a semantic 
translation branch to generate semantic feature maps and 
gradient feature maps, respectively. These branches aim to 
better capture both the semantic and gradient information 
essential for generating high-quality line drawings. Finally, a 
fusion module integrates the gradient and semantic information 
to produce superior quality line drawings. Experiments were 
conducted on a self-constructed archaeology drawings dataset 
of grotto temples. Comparative analysis against mainstream 
methods demonstrates that the proposed method generates 
higher-quality line drawings, thereby advancing the 
development of computer-aided line drawing technology. 

II. RELATED WORK 

A. Conditional Generative Adversarial Networks 

Generative Adversarial Networks [10], initially proposed by 
Goodfellow et al., operate by continually optimizing their 
parameters through adversarial training of generators and 
discriminators, ultimately achieving the generation of realistic 
images. However, GANs typically take random noise as input, 
which can sometimes lead to difficulties in training the network 
due to information loss. To address this limitation, Mehdi et al. 
[9] introduced supervisory information as a conditional 
constraint, proposing Conditional Generative Adversarial 
Networks (CGANs). 

As illustrated in Fig. 1, CGANs incorporate not only random 
noise but also real tag information as input. This enhancement 
allows the generator to produce more targeted images, while 
enabling the discriminator to provide more directed feedback to 
the generator, thereby enhancing the overall performance of 
CGANs. The proposed method in this paper is based on the core 
idea of CGANs, introducing conditional constraints into the 
generative adversarial network framework. This enables the 
model to continuously make progress in the training process of 
generation, discrimination, and feedback optimization. 

B. Convolutional Block Attention Module 

Woo et al. [16] present the Convolutional Block Attention 
Module (CBAM), which integrates spatial attention and 
channel attention. The structure of CBAM, depicted in Fig. 2, 

comprises the connection of the channel attention module and 
spatial attention module, augmented with a residual connection. 
Spatial attention evaluates pixels across the entire image, 
assigning higher weights to pixels in significant regions, while 
channel attention assesses the importance of various channel 
features, determining the allocation of weights for each 
channel. By combining both spatial and channel attention 
mechanisms, CBAM effectively captures informative spatial 
and channel-wise dependencies within the input features. 

 

 

Fig. 1 CGAN structure 
 

 

Fig. 2 CBAM structure 
 

As depicted in Fig. 2, the channel attention module conducts 
both maximum pooling and average pooling operations on the 
input feature map along the spatial dimension. Subsequently, it 
extracts channel-wise features through a Multi-Layer 
Perceptron (MLP) [17] with shared weights. The outputs of 
both operations are then added pixel-wise, and then activated 
through a sigmoid function to obtain the channel attention 
feature map. This process can be mathematically represented by 

Channel 
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Channel Attention Module
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(1), where Mc(F) denotes the channel attention feature map, σ 
represents the sigmoid function, W0 and W1 denote the weights 
of the two convolution layers respectively, Fc 

avg represents the 
output of average pooling, and Fc 

max represents the output of 
maximum pooling. 

 

( ( ( ( ( () )) )))c c
1 0 avg 1 0 m xc aM F = σ W W F +W W F  (1) 

 
The spatial attention module conducts average and maximum 

pooling operations on the input feature map along the channel 
dimension. It then concatenates the resulting feature maps and 
convolves the output to obtain the spatial attention feature map. 
This process is mathematically expressed by (2), where Ms(F) 
denotes the spatial attention feature map, σ represents the 
sigmoid function, f7×7 denotes the convolution operation with a 
7×7 convolution kernel, Fs 

avg represents the output of average 
pooling, and Fs 

max represents the output of maximum pooling. 
 

() [ ]))( ( 7 7 s s
avg maxsM F = σ f F ;F  (2) 

 
Finally, CBAM combines the channel attention feature map 

and the spatial attention feature map to obtain the attention 
feature weight, which is then element-wise multiplied with the 
input feature map to produce the final output feature map. 

In this paper, CBAM is incorporated into the archaeology 
drawings generation model to bolster the model's capacity in 
identifying local features within cultural relic 
orthophotographs. These features encompass image contours, 
decorative edges, and other intricate details crucial for 
producing higher-quality line drawings. With the help of 
CBAM's ability to capture both channel-wise and spatial 
dependencies, the model enhances sensitivity to relevant 
features, thereby facilitating the generation of line drawings 
with improved fidelity and accuracy. 

III. METHOD 

For the design of archaeology drawing generation networks, 
it is important to consider two critical factors: image resolution 
and gradient information. 

Firstly, cultural relic orthophotographs obtained from 
archaeological surveys typically possess high resolutions, 
which may exceed the input resolution limits of general deep 
learning models. As a result, preprocessing steps such as 
downsampling or cropping are often required to reduce image 
resolution to facilitate network training. However, 
downsampling leads to direct information loss, while cropping 
compromises image integrity and disrupts contextual 
coherence. Hence, network design should prioritize enhancing 
the model's ability to process high-resolution images 
effectively. Secondly, due to the focus on features such as 
contours and edges of artifacts in archaeology drawing 
generation tasks, obtaining gradient information from images is 
a crucial aspect of network design. 

To generate high-resolution and detailed archaeological line 
drawings, it is necessary to fuse features extracted from images 
at different scales to ensure the integrity of both global and local 

features. Additionally, it is important to design a reasonable 
approach for extracting effective gradient information. 

Based on CGAN architecture, this paper proposed a method 
that incorporated both image semantics and gradient 
information extraction, termed the Semantic Translation and 
Gradient Screening Dual-Branch Archaeology Drawings 
Generation Model. The network structure, depicted in Fig. 3, 
consists of two parallel branches: the Semantic Translation 
Branch (STB) and the Gradient Screening Branch (GSB). The 
feature maps output from both branches are subsequently 
combined by a fusion fine-tuning module to generate the 
archaeology drawings. 

The primary concept underlying this method is to leverage 
the STB to learn texture, color, and other semantic features of 
cultural relic images. Concurrently, the GSB focuses on 
extracting contour and edge features from the image while 
filtering out redundant gradient information. Finally, the 
outputs of both branches are effectively integrated to generate 
an archaeology drawing with high resolution and clear details. 
This approach facilitates comprehensive feature extraction and 
synthesis, enhancing the model's ability to generate accurate 
and detailed line drawings. 

The network calculation process unfolds as follows: Initially, 
the cultural relic image serves as the input to the STB, while the 
edge extraction algorithm generates the initial gradient map 
from the same cultural relic image, which acts as the input to 
the GSB. Dual branches independently produce the semantic 
feature map and the gradient feature map, respectively. 
Subsequently, the fusion fine-tuning module combines the 
feature maps to generate the predicted archaeology drawings. 

During network training, the parameters of the network 
undergo updates through the adversarial game between the 
discriminator and generator of each branch. This adversarial 
training process facilitates the refinement of the model's ability 
to generate accurate archaeology drawings by iteratively 
optimizing the semantic translation and GSBes. 

A. Gradient Screening Branch 

The extraction of gradient information can be considered as 
an edge detection task. However, gradient maps obtained solely 
through conventional edge detection operators often contain a 
significant amount of noisy artifacts. The key to generating 
high-quality line drawings lies in filtering out this intricate 
noise and retaining essential line information within the cultural 
relic gradient image. 

Consequently, the task of the GSB is defined as the selective 
extraction of necessary gradients for generating line drawings 
from the extensive and intricate gradient information present in 
the cultural relic images, as depicted in Fig. 4. 

The GSB is constructed based on CGAN, comprising the 
generator G2 and the discriminator D2. As illustrated in Fig. 3, 
the input of G2 is the initial gradient image Ig extracted from the 
cultural relic image Io, and the output is the refined gradient 
image g after screening. Discriminator D2's task is to compare 
the gradient feature map g with the gradient label of the line 
drawing gtg, thereby compelling G2 to generate a more realistic 
g. Essentially, generator G2 learns the mapping relationship 
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between the images from domain Ig and gtg. Therefore, it can 
focus more on distinguishing between noise and lines, thus 

achieving the purpose of filtering gradient information. 

 

 

Fig. 3 Network structure 
 

 

Fig. 4 Process of extracting gradient feature maps by GSB 
 

The initial gradient map Ig and the gradient label of the line 
drawing gtg are obtained using the Sobel operator. The Sobel 
operator is a first-order derivative edge detection operator, 
which calculates gradients separately in the x and y directions 
to obtain the final gradient. It acts on the artifact 
orthophotograph Io and the line drawing label gtg. 

In terms of specific network architecture design, 
discriminator D2 has been improved based on a multi-scale 
Markov discriminator [10], as illustrated in Fig. 5. The core 
concept of the Markov discriminator is to partition the image 
into several regions and penalize based on the similarity of each 
region, allowing the network to focus on learning high-
frequency information and local features. The discriminator 
adopts multi-scale architecture, creating an image pyramid by 
downsampling the line drawing results and labels, which are 
then separately fed into the Markov discriminator. In this paper, 
an attention mechanism is integrated into the discriminator to 
enhance its discriminative ability, specifically employing the 
CBAM attention module. By discriminating between the 
gradient feature maps and gradient labels at different scales, 

discriminator D2 can effectively identify differences between 
them in terms of global perspective and local details, thereby 
guiding the generator G2 to produce more accurate gradient 
maps. 

The generator employs a full convolutional structure 
organized in an encoder-decoder architecture, as illustrated in 
Fig. 6. In the encoder section, the channel number is initially 
increased to 64 using a 7x7 convolution kernel with a large 
receptive field. Subsequently, downsampling is performed four 
times using 3x3 convolution kernels, and several residual 
blocks are incorporated to enhance feature extraction. Finally, 
the generator's feature extraction capability is bolstered by 
integrating the CBAM attention module. 

In the decoder section, four symmetrical upsampling 
operations are sequentially conducted to decode the extracted 
deep features and generate the gradient feature map. This 
symmetrical convolutional structure is designed to output a 
high-resolution gradient map identical to the cultural relic 
image. By performing multiple downsampling and upsampling 
operations, the model's receptive field is expanded while 
preserving more spatial information. 

The inclusion of an intermediate feature layer comprising 
multiple residual blocks serves to deepen the network's depth, 
enabling it to learn more abstract features. This mitigates issues 
such as gradient disappearance and explosion, thereby 
enhancing the training stability of the model. Overall, this 
architecture facilitates effective feature extraction and 
synthesis, ultimately contributing to the generation of high-
quality gradient maps. 

The generator is a fully convolutional structure, constructed 
in an encoder-decoder architecture, as depicted in Fig. 6. The 
encoder part first increases the number of channels to 64 using 
a 7x7 convolutional kernel with a larger receptive field, 
followed by four downsampling operations using 3x3 
convolutional kernels. Subsequently, several residual blocks 
are connected, and finally, the CBAM attention module is 
employed to enhance the feature extraction capability of the 
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generator. The symmetric convolutional structure is designed to 
output high-resolution gradient maps with the same resolution 
as the input artifact images. By incorporating multiple 
downsampling and upsampling operations, the model's 
receptive field can be increased while preserving more spatial 

information. The intermediate feature layers composed of 
multiple residual blocks deepen the network's depth, enabling it 
to learn more abstract features and effectively alleviate the 
vanishing and exploding gradient issues, thus improving the 
training stability of the model. 

 

 

Fig. 5 Improved discriminator structure 
 

 

Fig. 6 Improved generator structure 
 

B. Semantic Translation Branch 

Different from the GSB, the STB focuses on extracting 
semantic information from cultural relic images, including 
advanced features such as color and texture, as depicted in Fig. 
7. 

Cultural relics often exhibit various degrees of deterioration, 
such as weathering, erosion, and pollution. It is challenging to 
capture the advanced features of cultural relics solely through 
gradient information. Therefore, the STB is tasked with 
learning the mapping relationship between different cultural 
relic images and archaeology drawings. Its objective is to enrich 
the semantic information generated by the cultural relic images 
and reduce semantic loss caused by cultural relic deterioration 

as much as possible. 
The structure of STB closely resembles that of GSB, 

comprising a generator G1 and a multi-scale Markov 
discriminator D1, both of which are augmented by the attention 
module CBAM to enhance their abilities. In the STB, the input 
to G1 is the cultural relic orthophotographs Io, and the output is 
the semantic feature map s containing high-level semantic 
information. Similar to the GSB, the generator G1 adopts a full 
convolutional structure, incorporating convolution layers with 
varying receptive fields and multiple intermediate residual 
block layers. Similarly, the discriminator D1 in the STB also 
adopts a multi-scale Markov discriminator structure. It focuses 
on identifying local detail differences in cultural relics while 
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considering the overall contextual information, which ensures 
that G1 generates a semantic feature map s with comprehensive 
semantic information and clear details, guided by both local and 
global information provided by D1. Overall, the STB is 
designed to effectively capture and represent the complex 
semantic characteristics of cultural relics, ensuring that the 
generated semantic feature map contains rich and accurate 
semantic information essential for generating high-quality line 
drawings. 

 

 

Fig. 7 Process of extracting semantic feature maps by STB 
 

Compared to the advanced features such as color and texture 
that STB can learn from cultural relic images, GSB is limited to 
learning gradient information such as edges and contours. This 
limitation may result in the loss of details during the generation 
process. To address this problem, this paper proposed feature 
transmission to facilitate the transmitting and sharing of 
semantic information learned by STB. Specifically, during the 
training process of STB, intermediate semantic features 
obtained by the encoder are transmitted to the intermediate 
feature layer of GSB. These features are then decoded to output 
the gradient feature map and concatenated along the channel 
dimension. The transmission of intermediate semantic feature 
maps supplements the high-level semantic information learned 
by STB from the orthophotographs of cultural relics. It 
compensates for the information lost during the calculation 
process of the Sobel operator in GSB. As a result, GSB can 
converge faster and output more accurate gradient maps, 
thereby guiding the synthesis of archaeology drawings more 
effectively. 

C. Fusion Fine-Tuning Module 

The gradient feature maps output by the GSB are grayscale 
images, primarily carrying high-frequency information such as 
the contours and edges of the artifact's orthophotographs. On 
the other hand, the STB outputs semantic feature maps as RGB 
images, mainly containing higher-level semantic features such 
as colors, textures, and objects present in the artifact's 
orthophotographs. An ideal archaeology drawing should 
combine both clear and accurate lines (from gradient 
information) and clear semantic representation of cultural relic 

objects (from semantic information). Therefore, the task of the 
Fusion Fine-tuning Module is to merge the semantic feature 
maps and gradient feature maps, supplementing the selected 
gradient information into the semantic feature maps, thus 
generating the archaeology drawings. 

Since the semantic features and gradient information 
required for the archaeology drawings have already been 
extracted in the STB and GSB, the Fusion Fine-tuning Module 
needs to learn the process of merging these features. It is not 
reasonable to design overly complex network structures to 
avoid increasing the difficulty of network training and 
overfitting. 

The structure of the Fusion Fine-tuning Module is illustrated 
in Fig. 8, comprising an attention module, fusion convolutional 
layer, residual connection layer, and output convolutional layer. 
The fusion convolutional layer consists of two layers of 3x3 
convolutions, the residual connection layer consists of two 
residual blocks, and the output convolutional layer is a single 
3x3 convolution. After inputting the semantic feature maps and 
gradient feature maps into the Fusion Fine-tuning Module in a 
3:1 ratio, channel concatenation and feature fusion are 
performed, resulting in the output of the line drawings. 

D. Gradient Propagation Strategy 

The proposed method in this paper consists of three different 
generators, namely G1 for the STB, G2 for the GSB, and Gf for 
the fusion fine-tuning module. 

During the network training process, it is necessary to adhere 
to a reasonable forward propagation strategy; otherwise, there 
may be null pointer errors due to undefined feature maps at 
certain moments, leading to training failures. Additionally, 
since this model involves two types of labels, namely gradient 
labels and line map labels, the design of the backpropagation 
strategy also needs to be rational. So, the propagation strategy 
designed in this paper is as follows: 
(1) Forward Propagation Strategy: 
1) Generator G1 first conducts forward propagation to obtain 

semantic feature maps and intermediate features used for 
feature transmission, and then waits. 

2) G2 conducts forward propagation, incorporating 
intermediate features from G1 into the calculation process 
to obtain gradient feature maps. 

3) After both G1 and G2 complete forward propagation, Gf 
conducts forward propagation to generate the final 
archaeology drawing. 

(2) Backward Propagation Strategy: 
1) After G2 generates the gradient map, the loss of the gradient 

filtering branch is calculated based on the gradient labels, 
and then backpropagation is performed. Since the 
generation of the G2 gradient feature map integrates the 
intermediate features from G1, the backpropagation will 
update the overall network parameters of G2 and the 
network parameters of the downsampling part of G1. 

2) After the fusion fine-tuning module finally generates the 
line drawing, the loss of the line drawing is calculated, and 
backpropagation is carried out. Since the input of the fusion 
fine-tuning module comes from both G1 and G2, G1 and G2 
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will undergo backpropagation again. Throughout the entire 
backpropagation process, both branches have undergone 

multiple parameter updates, enhancing the stability of 
network training.

 

 

Fig. 8 Fusion Fine-tuning Module 
 

E. Loss Function 

The loss function proposed in this paper includes adversarial 
loss, feature matching loss, and VGG loss. These losses 
measure the differences between the intermediate feature maps 
and the generated archaeological line maps and their 
corresponding labels from different dimensions to guide the 
overall training process of the network, aiming to improve the 
accuracy of the model in generating archaeology drawings as 
much as possible. 

(1) Adversarial Loss 

The STB and GSB each constitute a set of adversarial losses, 
calculated using mean squared error. For GSB, its adversarial 
loss is defined as (3): 

 

    
   1

g

g 2

gGAN -GSB 2 2 I ,gt 2 g g

I 2 g 2 g G

L G ,D = E logD I ,gt +

                              E log - D I ,G I ;θ 
 

 (3) 

 
where Ig and gtg represent the gradient labels of the 
orthophotograph and line drawing respectively, and θG2 denotes 
the parameters of generator G2. 

The STB will input the line drawings generated by the fusion 
fine-tuning module into discriminator D1 to calculate the loss. 
Thus, the adversarial loss definition for STB is defined as (4): 

 

    


STB 1 1 , 1

1 1 2

, log ,

log[1 ( , ( ( ; ), ( ; ); ))]}

o

o 1 2 f

GAN I gt o

I f o G g G G

L G D E D I gt

E D I G G I G I  

  


 (4) 

 
where Io and gt are the labels of the cultural relics 
orthophotographs and line drawings respectively, while θG1, 
θG2, and θGf represent the parameters of generators G1, G2, and 
Gf respectively. 
 

(2) Feature Matching Loss 

This paper introduces a feature matching loss to guide line 
drawings generation, using the extracted intermediate features 
for loss computation. The feature matching loss is computed 
using the L1 distance, where multiple intermediate feature maps 
obtained from the discriminator are compared with the 
archaeology drawing labels, and the losses are calculated 
separately. After weighted summation, the average pixel-wise 
value computes the final feature matching loss. The definitions 
of feature matching losses for GSB and STB are defined as (5) 
and (6): 
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where m represents the number of multi-scale discriminators, n 
represents the number of discriminator layers, k represents the 
number of multi-scale discriminators, and Ni is the size product 
of the output feature map of each layer. 

(3) VGG Loss 

Similar to the concept of feature matching loss, the 
intermediate feature maps extracted by the VGG model are used 
to compute the loss with respect to the line drawing labels. The 
VGG model serves as a powerful and generic feature extractor, 
capable of objectively assessing the quality of line map results. 
By pre-training the VGG19 model [15] to compute the L1 loss, 
the losses from various layers are weighted and summed, 
followed by averaging over pixels to obtain the final VGG loss. 
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The definitions of VGG losses for GSB and STB are defined as 
(7) and (8): 

 

 

    
VGG 2

( ) ( )
( , )

11
2

,

1
, ,

GSB

g g

i i
I g

r

t g g g g
i i

L G V

E V I gt V I G I
N








 (7) 

 

 

       
VGG 1

( ) ( )
( , ) 1 2

11

,

1
, , ,

o

STB

i i
I gt o o f o g

i

r

i

L G V

E V I gt V I G G I G I
N








 (8) 

 
where r represents the number of layers in VGG19, Ni denotes 
the product of the dimensions of the output features for each 
layer, and V represents the pre-trained VGG19 model. 

In summary, the loss function of the network model proposed 
in this paper is defined as (9): 

 

1 2 3

1 2 VGG 3 VGG

loss

GAN GSB GAN STB FM GSB

FM STB GSB STB

L

L L L
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  

  
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  


  

 

 (9) 

 
where λ represents the weight of each loss function, determining 
the degree of influence of the three losses on the network 
training. 

IV. EXPERIMENTAL SETUP 

A. Dataset 

In this paper, a portion of the cultural relics data is sourced 
from relevant institutions, while the remainder is extracted from 
publicly available publications. The completed paired dataset is 
depicted in Fig. 9. Additionally, certain orthophotographs are 
derived from 3D models provided by relevant units. 
Furthermore, some orthophotographs and lines are obtained 
from various sources including Yungang Grottoes: Volume I 
[18], Research Report of the Institute of Human Sciences of 
Kyoto University: Yungang Grottoes [19], and Archaeological 
Report of Xumishan Grottoes: Yuanguangsi District [20]. 

The dataset obtained, comprising orthophotographs and 
archaeology drawing labels, undergoes preprocessing and 
pairing to being fed into the network for training. The dataset 
production process in this paper is outlined as follows: 
1. Background Removal and Adjustment: The background of 

the line drawing and irrelevant labels are eliminated, while 
brightness and contrast are adjusted to enhance line 
visibility. 

2. Height Alignment Adjustment: Based on cultural relic 
images, the alignment between the line and picture content 
is adjusted to ensure coherence. 

3. Multi-scale Cropping and Resolution Adjustment: Cultural 
relic images and line drawings are cropped based on the 
multi-scale concept, followed by resolution standardization 
to ensure uniformity. 

4. Data Augmentation: Techniques such as rotation and 
symmetry are employed to further expand the dataset. 

The dataset is then divided into training, validation, and test 
sets as outlined in Table I. 

 

 

Fig. 9 Examples of archaeology drawing dataset 
 

TABLE I 
STATISTICS OF THE DATASET 

Dataset Number of images 

Training 1536 

Validation 240 

Test 240 

Total 2016 

B. Evaluation Indexes 

Archaeology drawings are grayscale images composed of 
white backgrounds and black lines. Taking into account 
commonly used image quality assessment indexes as well as the 
specific characteristics of archaeology drawings, we selected 
three metrics — PA, SSIM, and PSNR — to establish a 
comprehensive evaluation framework for archaeology 
drawings. 

The pixel accuracy is defined as (10): 
 

1 1
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0 0
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1 h w

i j i j
i j

PA x y
h w
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 


    (10) 

 
where x and y represent the two images being compared, i and 
j denote the indices of pixels, h and w are the numbers of pixels 
in the image's height and width directions, respectively. 

The SSIM is defined as (11): 
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where μx represents the mean of x, σx represents the standard 
deviation of x, σxy represents the covariance of x and y. C1 and 
C2 are constants to prevent denominators from being zero. 
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Considering that the backgrounds of archaeology drawings 
are predominantly pure white, resulting in similar brightness 
attributes across different line drawings, the evaluation ability 
of SSIM among line drawings generated by different models is 
not distinct enough, making it unsuitable as a direct evaluation 
index for archaeology drawings. Therefore, in this paper, we 
adjusted the calculation of SSIM by removing the brightness 
attribute, defining a new evaluation index termed SSIM-woL 
(SSIM without luminance), as shown in (12): 

 

2

2 2
2
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( )
xy

x y

C
SSIM woL x y

C


 


 

 
 (12) 

 
The peak signal-to-noise ratio formula is defined as (13): 
 

2

1010 log IMAX
PSNR

MSE

 
  

 
 (13) 

 
where MAXI represents the maximum pixel value of the image, 
which is typically 255 in the case of 8-bit grayscale images, and 
MSE stands for mean square error. 

C. Experimental Settings 

The experiments were conducted on a deep learning platform 
equipped with an NVIDIA GeForce RTX 3090Ti GPU (24GB). 
The server system runs on the Ubuntu 18.04 LTS operating 
system, and the network model was built using the PyTorch 
1.12 deep learning framework. 

The method proposed in this paper, referred to as HD-dual, 
was trained using a dataset of archaeology drawings from the 
grotto’s temple, comprising 2016 pairs. During the model 
training phase, the network batch size was set to 1, and instance 
normalization was applied. The Adam optimization algorithm 
[21] was employed to iteratively update the generators and 
discriminators of the two branches. The initial learning rate (lr) 
was set to 0.0002, with a momentum decay factor (β1) of 0.5 
and an infinite norm decay factor (β2) of 0.999. In the 
experiments, the model was initially trained for 150 epochs 
with the specified learning rate and then further trained for 100 
epochs with linearly decaying learning rates. The training 
process was monitored using the TensorBoard visualization 
tool. 

V. RESULT AND DISCUSSION 

A. Comparison with Other Methods  

To evaluate the line drawing generation performance of the 
proposed module in this paper, we conducted comparative 
experiments with mainstream image generation models, 
including HED, BDCN, pix2pix, and pix2pixHD [14]. 
Comparative experiments were performed on a self-built multi-
scale archaeological line graph dataset, with experimental 
parameters set consistent with the "Experimental Setup" 
section. 

Fig. 10 presents a comparison of the results of line drawing 
generation from five models. From the figure, it can be 

observed that the lines generated by HED are thick and blurry, 
resulting in significant overlapping in areas with dense 
anomalies and noise. The lines generated by BDCN are thinner 
compared to HED, but discontinuities in the lines are 
prominent, leading to the loss of numerous detailed features. 
Pix2pix partially addresses the issues of high noise and 
discontinuous lines; however, it introduces many randomly 
scattered false lines, resulting in poor line accuracy. Pix2pixHD 
mitigates some of the false line issues compared to pix2pix but 
still exhibits a noticeable gap from the ground truth labels. In 
contrast, the proposed method demonstrates improvements in 
noise reduction and line continuity, approaching closer to the 
ground truth labels. Overall, the proposed method presents 
optimal performance. 

The results of the line drawing generation from the five 
methods were quantitatively evaluated using the evaluation 
indexes listed in Table II. Analysis of the results in the table 
reveals that the proposed method achieved the best results 
across all evaluation metrics. In terms of PA, HD-dual 
improved by 5.9% compared to pix2pix and by 2.5% compared 
to pix2pixHD, indicating a significant enhancement in the 
accuracy of line drawing generation using our method. 
Regarding SSIM-woL, HD-dual showed increase of 16.7% and 
0.8% compared to pix2pix and pix2pixHD, respectively, 
demonstrating a higher similarity between the archaeology 
drawings generated by HD-dual and the ground truth. 
Furthermore, the PSNR increased by 8.4% and 2.3% compared 
to pix2pix and pix2pixHD, respectively, indicating a stronger 
noise suppression ability of HD-dual. In conclusion, the line 
drawing generation performance of our method surpasses that 
of the current mainstream image generation models. 

 
TABLE II 

COMPARISON OF EVALUATION INDEXES FOR GENERATING ARCHAEOLOGY 

DRAWINGS BY 5 MODELS ABOVE 

Network PA SSIM-woL PSNR 

HED 70.67% 48.90% 10.70 

BDCN 81.64% 54.89% 11.94 

Pix2pix 83.29% 61.49% 12.89 

Pix2pixHD 86.04% 71.20% 13.66 

HD-dual 88.21% 71.78% 13.97 

B. Effect of Feature Transmission Module 

To evaluate the effect of the feature transmit module in HD-
dual, the performance of the HD-dual without the feature 
transmit module (referred to as HD-dual-Notrans) was tested on 
the self-constructed archaeology drawings dataset. The 
influence of the absence of the feature transmission module on 
the output feature maps of GSB and STB was analyzed. 

(1) Influence on GSB Output Feature Map 

Fig. 11 presents the GSB output of HD-dual-NoTrans and 
HD-dual. Comparing Figs. 11 (a) and (b), it is evident that the 
GSB output feature map of HD-dual-Notrans exhibits many 
line breakpoints and lacks smoothness. For instance, the line 
texture at the skirt of Fig. 11 (a) is not clearly defined, and the 
outline on the left side of the figure lacks key edges. 
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Fig. 10 Comparison of HD-dual and traditional models to generate line drawings 
 

Due to the fact that the GSB of HD-dual-NoTrans only learns 
the mapping relationship between two gradient domains, it 
focuses more on edge information while lacking semantic 
information, resulting in incomplete features in the generated 
line drawing. By comparison, the output of the GSB in HD-dual 
in Fig. 11 (c) exhibits smoother lines with almost no noise. With 
the assistance of semantic information from the STB, it 
overcomes problems such as discontinuities and uneven lines, 
thereby generating higher-quality gradient lines. In summary, 
introducing feature transmission can enhance the output image 
quality of GSB. 

 

 

Fig. 11 Effect of feature transmit module on GSB output 
 

(2) Influence on STB Output Feature Map 

The feature transmit module may also affect the output 
feature maps of the STB because part of the features of the GSB 
generator G2 comes from the STB generator G1, and during 
gradient backward propagation, G1 undergoes parameter 
optimization as well. To find the impact of the transmit module 
on the output feature maps of the STB, we compared the STB 
outputs of HD-dual and HD-dual-NoTrans, as shown in Fig. 12. 

The STB output feature maps of HD-dual-NoTrans appear 
more blurred, with less distinct expression of semantic 

information, whereas the STB semantic feature maps of HD-
dual exhibit better quality (Fig. 12 (c)), with clearer garment 
textures and an improvement in the extraction of different 
features. 

 

 

Fig. 12 Effect of feature transmit module on STB output 
 

 

Fig. 13 Effect of the feature transmit module on the generated line 
drawings 

 

Additionally, we compared the generated results of HD-dual 
and HD-dual-NoTrans line drawings. As depicted in Fig. 13, 
the lines of HD-dual-NoTrans appear messy and contain more 
noise, while the lines of HD-dual are clearer with fewer 
breakpoints. For instance, as illustrated in Table III, HD-dual 
exhibits 3.3% increase in PA, 1.3% increase in SSIM-woL, and 
6.3% increase in PSNR compared to HD-dual-NoTrans. These 
findings further evaluate the effectiveness of the feature 
transmit module and affirm that the semantic features from STB 
complement the gradient information from GSB, thereby 
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facilitating HD-dual in generating line drawings with superior 
quality. 

 
TABLE III 

COMPARISON OF EVALUATION INDEXES FOR ABLATION EXPERIMENTS OF 

FEATURE TRANSMIT MODULE 

Network PA SSIM-woL PSNR 

HD-dual-NoTrans 85.36% 70.86% 13.1385 

HD-dual 88.21% 71.78% 13.9742 

Improvement 3.3% 1.3% 6.3% 

C. Effect of Attention Module 

In order to evaluate the impact of attention mechanisms on 
the quality of line drawing generation, we incorporated the 
CBAM attention module into the generator, discriminator, and 

fusion fine-tuning module of the HD-dual model. The generated 
line drawings were then compared with those generated by the 
HD-dual-NoAtt model, which does not include attention 
module, as shown in Fig. 14. 

After incorporating CBAM, the contours of the line drawings 
are closer to the labels. The positions of facial lines and robe 
texture lines on the Buddha statue are more accurate, and there 
are fewer erroneous lines in the damaged areas. This suggests 
that the influence of cultural relic damage on line drawing 
generation is minimized with the use of attention mechanisms. 
Additionally, attention mechanisms increase the weight 
allocation for features such as contour edges, leading to 
significant improvements in the generation of these details. This 
effectively evaluates the effectiveness of the attention module. 

 

 

Fig. 14 Comparison of generated line drawings before and after optimization of CBAM 
 

TABLE IV 
COMPARISON OF EVALUATION INDEXES OF GENERATED LINE DRAWINGS 

BEFORE AND AFTER OPTIMIZATION OF CBAM 

Network PA SSIM-woL PSNR 

HD-dual-NoAtt 88.21% 71.78% 13.97 

HD-dual 88.64% 71.86% 14.10 

Improvement 0.5% 0.1% 0.9% 

 

The quantitative indicators for the generated line drawings 
before and after incorporating attention mechanisms are shown 
in Table IV. PA, SSIM-woL, and PSNR, show improvements, 
indicating that the HD-dual model integrated with CBAM 
performs better in archaeology drawing generation tasks and 
can generate higher-quality archaeological line graphs. 

D. Generalization Verification 

In order to assess the generalization of the proposed method 
on different archaeology drawings datasets, we conducted 

generalization verification on a self-constructed dataset of 
Dunhuang mural archaeological line drawings. 

 
TABLE V 

COMPARISON OF EVALUATION INDEXES OF DUNHUANG MURAL LINE 

DRAWINGS GENERATED BY THE MODELS ABOVE 

Network PA SSIM-woL PSNR 

Pix2pixHD 88.81% 75.08% 12.60 

HD-dual 88.97% 75.69% 12.66 

Improvement 0.2% 0.8% 0.5% 

 

The comparison between the line drawings generated by HD-
dual and pix2pixHD is illustrated in Fig. 15. It can be observed 
that the lines generated by HD-dual are more continuous with 
fewer noise artifacts, and the hand ring and fingers are clearer. 
This demonstrates that HD-dual can better capture edge 
information at different scales, enriching the local details. The 
quantitative comparison indexes are presented in Table V, 
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indicating improvements across all three indexes. This confirms 
that the proposed method exhibits a certain degree of 
generalization capability. 

 

 

Fig. 15 Comparison of models generating Dunhuang mural line 
drawings 

VI. CONCLUSION 

Archaeology drawings serve as integral components of 
archaeological reports and play a vital role in cultural relics 
preservation. The application of deep learning models in 
archaeology drawings generation significantly alleviates the 
workload burden on archaeologists. In order to address 
challenges such as low resolution in line drawings produced by 
current mainstream algorithms and susceptibility to cultural 
relic diseases, this paper proposes a high-resolution image 
generation algorithm for archaeological line drawings. Based 
on CGAN, we present a dual-branch archaeology drawings 
generation model comprising semantic translation and GSBes, 
each designed to extract distinct features. Further enhancement 
of line graph generation quality is achieved through feature 
transmission and attention modules. 

We constructed an archaeology drawing dataset of grotto 
temples based on publicly available publications and data from 
collaborating institutions, and further expanded this dataset 
using multi-scale cropping and data augmentation strategies. 
Experimental comparisons were conducted between our 
proposed model and mainstream image generation models on 
self-constructed dataset to validate the line drawing generation 
performance. The results show that the PA, SSIM-woL, and 
PSNR of the line drawings generated by the proposed model are 
improved, reaching 88.21%, 71.78%, and 13.97 dB, 
respectively. Additionally, we also designed ablation 
experiments to independently verify the functionality of the 
feature transmit module and the attention module. The results 
demonstrate superior quality in line drawing generation by 
proposed model compared to the comparison model lacking 
these modules, proving their effectiveness. The application of 

our method to the Dunhuang mural dataset has also achieved 
good results, which verifies that the model has a certain 
generalization. 

Our method facilitates the automatic generation of 
archaeology drawings, thereby aiding archaeological workers 
in line drawing tasks. However, the proposed method has a 
large number of parameters, and the training period is 
somewhat lengthy and challenging. Additionally, to integrate 
with archaeological practices, it is necessary to design a suitable 
vectorization algorithm to be applied to the line drawings 
generated by the model, so that the archaeological experts can 
easily edit and modify the lines in sections. 
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