

Abstract—This research explores the benefits and methods of

integrating Continuous Integration and Continuous Delivery (CI/CD)
methodologies into network automation, focusing on Infrastructure as
Code (IaC) applications. The primary goal is to enable IT
organizations to achieve scalable network resources with enhanced
security and compliance while streamlining deployment processes.
The study highlights some key advantages of CI/CD, including
improved version control, reduced manual errors and enhanced
operational efficiency. Despite these benefits, using cloud-based
systems and open-source tools introduces security challenges that
organizations must address to optimize network configurations
effectively.

Keywords—Infrastructure as Code, Continuous Integration,

Continuous Delivery, pipeline, azure, terraform.

I. INTRODUCTION

ODERN enterprises face the challenges of rapidly
evolving competitive environments, increasing security

mandates, and the need for scalable performance. Over the past
decade, it has become essential for organizations to balance
operational stability with swift feature development. CI/CD is
the key answer to this problem, a methodology that facilitates
swift software modifications while ensuring system stability
and security [1].

Organizations leveraging software development as a
competitive edge continually face the challenge of accelerating
software delivery while maintaining quality and stability. A set
of technical practices has emerged to meet this demand,
collectively known as Continuous Delivery (CD). The primary
objective of CI/CD methods is to deliver products to clients
regularly by automating various stages of development, thereby
enhancing process efficiency and minimizing the risk of human
error [2].

As CI/CD has revolutionized software development, network
teams seek to incorporate the CI/CD methodologies into their
network automation and orchestration efforts to enhance speed
and optimize delivery [3]. Network engineers are increasingly
utilizing repositories, pipelines, and various technologies to
expedite the creation, testing, and implementation of network
automation and orchestration workflows [4].

This paper analyzes the feasibility and practical implications
of CI/CD-based automation for secure network configuration.
Specifically, it examines the application of open-source IaC in

Tharunika Sridhar is with Microsoft, WA 98052 USA (phone: 571-297-

5205; e-mail: tsridhar@micrsoft.com).

CI/CD to improve network setup functionality. To our
knowledge, this study serves the following purposes [5]:
a) IaC in CI/CD enables resource scaling without impacting

network performance, allowing adaptation to workload
changes.

b) CI/CD pipelines incorporate IaC support security and
compliance checks, standardize network settings and
reduce vulnerabilities.

c) IaC facilitates DevOps practices, meeting operational
demands through accelerated testing, iteration, and
deployment of network changes.

d) Version control, IaC documentation, and easy rollback
mechanisms reduce downtime and manual errors.

e) Network provisioning automation minimizes manual labor
and costs and optimizes resource usage.

f) IaC enforces compliance and accountability by auditing
network setups to document modifications.

II. RELATED WORKS

Several studies have explored the integration of CI/CD and
IaC in network automation. For instance, [6] discussed the
challenges of creating manual Enterprise Architecture (EA)
models and proposed automating data collection to enhance
model reliability. This study presented network scanning for
autonomous data collecting and leverages ArchiMate to
generate EA models based on company IT infrastructure. While
promising, the approach required additional effort to ensure
practical applicability.

Reference [7] highlighted the benefits of CI/CD, such as
version control, automated testing, and rapid validation of
software changes. The research justified that developers could
merge code changes into a repository and execute automated
builds and tests in continuous integration (CI). CI speeds up
software validation and release, improves software quality and
adds to bug detection and fixes. The study emphasized the
efficiency gains in software development, but there is still a
need to explore the implications for secure and automated
network architecture.

As 5G standards evolved, as analyzed in [8], they enabled
significant advancements in network capabilities. This research
confirmed that mobile carriers must adapt to an expanding
range of industries and complex use cases. Engaging in vertical
5G markets involves various approaches, particularly for

Tharunika Sridhar

Enhancing Network Management through
Continuous Integration and Continuous Delivery

Pipelines and Infrastructure as Code Practices

M

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:12, 2024

712International Scholarly and Scientific Research & Innovation 18(12) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
12

, 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
92

5.
pd

f

onboarding vertical Network Applications. This study
introduces a streamlined, standards-based methodology for
vertical application onboarding. To ensure compatibility and
reproducibility, only industry-standard data models are utilized.
In practice, the methods outlined in this paper are applied within
a large-scale distributed 5G infrastructure.

Reference [9] examined the adoption of CI/CD in deploying
the Academic Information System at Paramadina University,
where application development relies on manual processes.
CI/CD is a software development methodology that enables
teams to automate code integration, run tests, and deliver
applications consistently and continuously. The researchers
aimed to implement CI/CD in the deployment process to
improve development efficiency, enhance application quality,
and increase adaptability.

Reference [10] examined IaC technologies, focusing on their
management and coding techniques. The study stressed that
network device configuration, resource allocation, and
application deployment are automated by “IaC” technologies.
Machine-readable codes allow IaC tools to perform time-
consuming tasks dynamically. The findings indicated the
potential of IaC to enhance automation but noted limitations in
network security optimization.

Similarly, the study in [11] analyzed the attack surfaces and
security implications of CI/CD pipelines on a large scale. An
analytical tool was developed to examine over 320,000 CI/CD-
configured GitHub repositories and quantify security-critical
practices. The findings revealed that late script updates and
script runtimes could conceal malicious code and exploit
vulnerabilities. The research confirmed that even valid scripts
can contain significant flaws. Furthermore, the current CI/CD
ecosystem relies on numerous simple scripts, which could
create single points of failure.

The publications examined show CI/CD and IaC network
infrastructure automation, standardization, and security gaps.
According to [6], manual EA model generation with automation
but unintegrated CI/CD and IaC have drawbacks. References
[7] and [9] address the deployment efficiency benefits of
CI/CD, but their potential for secure, automated network
architecture is less well-known.

The reviewed literature underscores the benefits of CI/CD
and IaC in automating network processes, but gaps in
standardization and security remain, necessitating further
exploration in this study.

III. PROBLEM STATEMENT

Despite the growing adoption of CI/CD and IaC, challenges
with standardization, security, and reliability persist. This is
leading to a shift to automated network infrastructure via CI/CD
and IaC, as it claims for robust and extensive validation on
standardization, security, and reliability issues because these
models are particularly being developed as improvements over
manual testing processes. Manual processes, as observed, make
configurations inconsistent, error-prone, and more vulnerable
to security breaches. For standard, secure, and dependable
CI/CD configurations, tight automated checks and compliance
standards with little human interaction are needed. It proposes

a CI/CD-based IaC framework for network management that
improves operational consistency, security, and dependability.

IV. FINDINGS AND RESULTS

This research employed exploratory and deductive methods
to demonstrate the practical benefits of CI/CD and IaC in
network automation. The proposed analysis uses reputable
academic research and publications, case studies, and logic to
justify the research aims.

Here, we have analyzed a cloud configuration model
developed by incorporating Terraform’s open-source IaC tool
into Azure infrastructure configuration platform and validated
its benefits over manual configuration processes and associated
risks [12].

The study focuses on providing insights into the scope of
deploying a scalable and secure Azure infrastructure. Based on
the research in [12], an Azure infrastructure model of cloud
configuration was analyzed using Terraform in a CI/CD setup.
The process involves creating reusable modules for easier
scaling and modification, configuring the Terraform backend to
store state files in Azure Blob Storage, and integrating
Terraform with Azure DevOps for pipeline automation to
manage deployments. This includes linting, validation using
terraform plan, and applying configurations through terraform
apply. Azure policies are implemented to enforce security and
compliance rules, such as mandating a minimum VM SKU,
while Azure Monitor provides a centralized platform for
logging and monitoring infrastructure. The architecture was
tested and proven to deliver satisfying scalability, automate
deployment processes, enhance security, and minimize human
error effectively.

TABLE I

CONFIGURATION OF MODEL

Component Specification
Azure Resource

Group
Purpose: Logical organization, lifecycle management,
access control, cost tracking. Resource:
azurerm_resource_group with name and location variables.

App Service
Plan

Purpose: Compute resources and scalability. Resource:
azurerm_app_service_plan, set for Linux, with defined SKU
for pricing and capacity.

Linux Web App Purpose: Managed platform for Java apps. Resource:
azurerm_linux_web_app, with configurations for app
service, runtime, and connection strings.

MySQL Server Purpose: Managed relational database. Resource:
azurerm_mysql_server with admin login, SKU, and security
settings, including SSL enforcement.

MySQL
Database

Purpose: Logical container for data. Resource:
azurerm_mysql_database, configurable performance, and
supports point-in-time restore.

Firewall Rule Purpose: Network security.
Resource: azurerm_mysql_firewall_rule to allow access,
with a rule applying to all IP addresses.

Terraform
Configuration

Provider: azurerm, with state management in Azure storage.
Variables: Defined in variables.tf for flexibility.
Main Configuration: Uses locals.

This is best explained as a stepwise approach in the context
of an Azure framework: To justify, we provide a feasibility
analysis of the three aspects of the model that are considered the
key areas of improvement of the CI/CD models over manual
network configuration processes [13].

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:12, 2024

713International Scholarly and Scientific Research & Innovation 18(12) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
12

, 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
92

5.
pd

f

A. Scalability

In the studied model, the Azure-based modular Terraform
infrastructure demonstrated significant scalability. To enhance
infrastructure efficiency across development, testing, and
production environments, computing resources and

infrastructures can dynamically scale up or down based on
predefined policies when workload thresholds are reached, and
scale back down when demand decreases. Terraform's state is
stored in Azure Blob Storage, ensuring 24/7 availability without
impacting scaling or deployment performance.

Fig 1. Example IOT Wireless Sensor network architecture benefiting from efficient-routing protocols

B. Automation

Automation is achievable with Azure IaC using Terraform.
By coding infrastructure, deployment and updates are
automated, minimizing human involvement. This enables
teams to execute Terraform plans and deploy Azure DevOps
code changes seamlessly through CI/CD pipelines, enhancing
efficiency and consistency. Furthermore, Terraform
configurations can integrate with Azure Functions or Logic
Apps to enable event-driven or scheduled deployments, such as
scaling workloads during business hours. Additionally, Azure
Policy and Terraform can automatically enforce compliance
standards during deployment, eliminating the need for manual
monitoring and ensuring that resources meet corporate
requirements.

C. Security and Risk Management

This is due to its critical role in security, particularly its
integration with Azure Active Directory for Azure role-based
access control. This integration allows organizations to
establish clear access controls, prevent unauthorized resource
access, and restrict critical resource permissions [14].
Additionally, Azure Key Vault is used to secure secrets, keys,
and certificates, avoiding the inclusion of hard-coded data in
Terraform scripts. Automated validation with terraform plan

helps detect application misconfigurations during deployment,
protecting the state file from corruption caused by concurrent
operations, which is especially vital in multi-user environments.
Terraform also resolves inconsistencies across environments by
standardizing IaC practices, reducing errors from manual
configuration, and enhancing operational security.

V. CONCLUSION

In conclusion, implementing CI/CD for network
configuration using IaC with Terraform in cloud environments
offers significant benefits. Role-Based Access Control (RBAC)
and Azure Key Vault enhance security by preventing sensitive
data exposure and managing access controls. Automated
validation with terraform plan safeguards against accidental
changes, while Terraform’s state locking ensures consistency
and prevents state corruption across environments. However,
challenges persist, particularly with cloud-based access and the
inherent vulnerabilities of open-source tools, which pose
security risks. Organizations must proactively address these
vulnerabilities to fully leverage the efficiency and reliability of
Terraform for deploying and managing their cloud
infrastructure.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:12, 2024

714International Scholarly and Scientific Research & Innovation 18(12) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
12

, 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
92

5.
pd

f

REFERENCES
[1] Rismanda Kusumadewi and R. Adrian, “Performance Analysis of Devops

Practice Implementation Of CI/CD Using Jenkins,” Matics Jurnal Ilmu
Komputer dan Teknologi Informasi (Journal of Computer Science and
Information Technology), vol. 15, no. 2, pp. 90–95, Oct. 2023, doi:
https://doi.org/10.18860/mat.v15i2.17091

[2] J. Fairbanks, A. Tharigonda, and N. U. Eisty, “Analyzing the Effects of
CI/CD on Open Source Repositories in GitHub and GitLab,” arXiv
(Cornell University), Mar. 2023, doi:
https://doi.org/10.48550/arxiv.2303.16393

[3] D. Gustavo Cruz, João Rafael Almeida, and José Luís Oliveira, “Open
Source Solutions for Vulnerability Assessment: A Comparative
Analysis,” IEEE Access, vol. 11, pp. 100234–100255, Jan. 2023, doi:
https://doi.org/10.1109/access.2023.3315595

[4] Intential, “CI/CD Pipelines for Network Automation & Orchestration
with Itential,” Itential, Sep. 12, 2024. Available:
https://www.itential.com/solutions/network-infrastructure-as-code/.
[Accessed: Oct. 30, 2024]

[5] S. Chinamanagonda, "Automating Infrastructure with Infrastructure as
Code (IaC)," International Journal of Science and Research (IJSR), vol. 8,
no. 11, pp. 123-128, Nov. 2019. Online. Available: www.ijsr.net.

[6] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt, “Automatic data
collection for enterprise architecture models,” Software & Systems
Modeling, vol. 13, no. 2, pp. 825–841, Jun. 2012, doi:
https://doi.org/10.1007/s10270-012-0252-1

[7] Y. Ska and J. P., “A study and analysis of continuous delivery, continuous
integration in software development environment,” JETIR, vol. 6, no. 9,
pp. 1-5, Sep. 2019. Online. Available: www.jetir.org

[8] K. Trantzas et al., “An automated CI/CD process for testing and
deployment of Network Applications over 5G infrastructure,” IEEE
Xplore, Sep. 01, 2021. doi:
https://doi.org/10.1109/MeditCom49071.2021.9647628. Available:
https://ieeexplore.ieee.org/abstract/document/9647628. Accessed: Mar.
09, 2023.

[9] Rendy Indriyanto and Diki Gita Purnama, “CI/CD Implementation
Application Deployment Process Academic Information System (Case
Study Of Paramadina University),” Jurnal Indonesia Sosial Teknologi,
vol. 4, no. 9, pp. 1503–1516, Sep. 2023, doi:
https://doi.org/10.59141/jist.v4i9.729

[10] Erdal Özdoğan, O. Ceran, and Mutlu Tahsin ÜSTÜNDAĞ, “Systematic
Analysis of Infrastructure as Code Technologies,” Gazi university journal
of science part a: engineering and innovation, vol. 10, no. 4, pp. 452–471,
Dec. 2023, doi: https://doi.org/10.54287/gujsa.1373305

[11] Z. Pan, W. Shen, X. Wang, Y. Yang, R. Chang, Y. Liu, C. Liu, Y. Liu,
and K. Ren, “Ambush from all sides: Understanding security threats in
open-source software CI/CD pipelines,” arXiv, vol. 2401.17606v1 cs.CR,
31 Jan. 2024.

[12] Sanket Dhole, “Terraform for Azure Cloud: Simplifying Infrastructure as
Code (IaC) - Canarys,” Canarys, Dec. 27, 2023. Available:
https://ecanarys.com/terraform-for-azure-cloud-simplifying-
infrastructure-as-code-iac/. Accessed: Oct. 30, 2024.

[13] Always learning, “Azure Terraform Pipeline — DevOps - Always
learning - Medium,” Medium, Feb. 17, 2024. Available:
https://ibrahims.medium.com/azure-terraform-pipeline-devops-
b57005a37936. Accessed: Oct. 30, 2024.

[14] Terraform, “Network infrastructure automation,” Terraform by
HashiCorp, 2024. Available: https://www.terraform.io/use-
cases/manage-network-infrastructure. Accessed: Oct. 30, 2024.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:12, 2024

715International Scholarly and Scientific Research & Innovation 18(12) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
12

, 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
92

5.
pd

f

