

Abstract—Working according to the DevOps principle has gained

in popularity over the past decade. While its extension DevSecOps
started to include elements of cybersecurity, most real-life projects do
not focus risk and security until the later phases of a project as teams
are often more familiar with engineering and infrastructure services.
To help bridge the gap between security and engineering, this paper
will take six building blocks of cybersecurity and apply them to the
DevOps approach. After giving a brief overview of the stages in the
DevOps lifecycle, the main part discusses to what extent six
cybersecurity blocks can be utilized in various stages of the lifecycle.
The paper concludes with an outlook on how to stay up to date in the
dynamic world of cybersecurity.

Keywords—Information security, data security, cybersecurity,
DevOps, IT management.

I. INTRODUCTION

N the past couple of years, the software development
approach DevOps (development and operations) has steadily

gained popularity within the IT community. Teams are being
staffed, and engineers demand to work according to its
principles or philosophy. At the same time, cyber incidents all
over the world have been rising [1]. Due to some very public
hacks, awareness within the development community has
increased significantly up to the notion that the DevOps
approach be enriched with security elements to evolve into
DevSecOps [2]. Although this broader approach is gaining
some traction, more needs to be done to add actionable security
knowledge to the DevOps approach, so teams – often not
trained in security – can easily work with it. Also, from a
regulatory point of view, possible security arrangements need
to be considered from the beginning on. An example can be
found with the South African POPI (Protection of Personal
Information) Act, where Section 19 explicitly requires
companies to adequately protect an individuals’ information
against loss, damage, or unlawful access or destruction [3].

The following paper will take six building blocks of
cybersecurity and apply them to the DevOps approach. To do
so, the paper will first briefly introduce the general lifecycle
behind DevOps. Thereafter, the main body will discuss to what
extent the cybersecurity blocks can be utilized in what stage of
the lifecycle. In terms of security measures NOT applied in a
typical DevOps setup, the paper draws on the authors’ own
experience working with DevOps projects and teams, where not
otherwise indicated.

The paper concludes with an outlook on how to stay up to
date in the dynamic world of cybersecurity and prevent
organizational silos due to specific security expertise.

Andrew John Zeller, PhD is with adorsys Ireland, Ltd., Department

Research in Dublin, Ireland (corresponding author, phone: +353 85 253 9575;
e-mail: andrew.zeller@adorsys.com).

II. THE DEVOPS LIFECYCLE

To introduce the reader to the concept of DevOps, this
chapter will give a brief overview of the eight stages in the
DevOps lifecycle [4].
1. PLAN: Business requirements are collected and the

roadmap for the project is derived;
2. CODE: The architectural concept is written and application

and supporting systems are built at this stage. Agile
processes may be used to deliver the results;

3. BUILD: The various modules of the code stage are
combined into a build;

4. TEST: The build is deployed into a test environment where
tests can be performed on it;

5. RELEASE: Once all the tests are complete and the
development team satisfied with the quality of the build, all
elements will be bundled into a release. Environment
variables will be reset and the adjustments for the
production environment made;

6. DEPLOY: The release will be deployed to the production
environment. In modern cloud system, the necessary
infrastructure will also be deployed via scripts;

7. OPERATE: Once the application is live for customers, the
operations team will manage the run-time and adjust
operations parameters and resources according to
performance and efficiency goals;

8. MONITOR: The entire environment will be monitored
with the help of dashboards and automated alerting tools.
Alerts can trigger pre-programmed reactions like automatic
provisioning of resources.

For reasons of brevity, this chapter only provided a quick,
high-level introduction. The DevOps lifecycle is discussed in
more levels of detail by Morales et al. [5].

III. APPLICATION OF SECURITY BLOCKS TO DEVOPS

The main chapter will apply security blocks to the above
introduced DevOps lifecycle and suggest what teams should
look at in particular over the various stages.

A. Risk Management

Assuming the lifecycle begins with its first phase PLAN
(which of course is not always the case as the lifecycle
oftentimes has been initiated years ago and is already running
when you join or when it is reviewed and altered), a rigorous
risk management exercise should be included from the first day
on. If the team operates in a regulated environment, there should
already be a comprehensive risk register in place. Given this,
the team will now have to identify all the new risks specific to

Francis Pouatcha, MSc is Global Tech Lead and founder of adorsys Group
and with adorsys Ireland, Ltd. in Dublin, Ireland.

Adding Security Blocks to the DevOps Lifecycle
Andrew John Zeller, Francis Pouatcha

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

302International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

6.
pd

f

their target application or target system, respectively. In
addition, cross-references should be made to pre-existing risk
determinations as the new application might change the risk
landscape and not only add to it. To add expertise and rigor to
the exercise, an outside expert could be brought in.

Once the risk exercises have been completed at the PLAN
stage, they should be regularly drawn upon and updated
throughout the entire lifecycle. This analysis will form the
foundation upon which to decide for and prioritize security
approaches and tools. In the BUILD stage, architects will use it
to decide which security patterns to apply and how to engineer
for the level of resilience required. Most importantly, at regular
intervals the risk assessment needs to be compared to what risks
have indeed crystallized over time.

At this point, industry security frameworks like PCI DSS,
NIST CSF, or ISO 27001 also come into play. All of them have
in common that they directly link into the existing risk
management framework of the company (or at least they
should). Based on the CIA principle (confidentiality, integrity,
availability), information assets will be classified into various
risk categories and prioritized according to their importance for
the company. In this respect, typical information assets would
be IT systems, processes, suppliers, and facilities. In a DevOps
environment, an example for a critical process may be the agile
development process and tools used with its integrated
development environment (IDE), Github source code
repository, CI/CD-pipeline as well as facilities the engineers
might have access to while developing.

Also, the location of the company, project, and type of data
involved need to be taken into account. Depending on this,
services might have to be run in a specific geographical region.
Data, for that matter, may have to reside within the boundaries
of that area. And backups must not be taken outside of that area.

For all the risks identified, controls will have to be
implemented and checked upon throughout the project lifecycle
[6].

B. Passwords and Authentication

The ideas in the following chapter apply to the setup and
management of the development environment but are especially
beneficial in the later stages OPERATE and MONITOR.

Right at the beginning of the project, the team will have to
subscribe to a common password policy that needs to be
adhered to while in development. If compatible with the
policies of the later run-time environment, this policy should
also be used for the production environment. If external
contractors are working in the environments, making these rules
also apply to them should be an absolute priority.

A fundamental concept around Password and Authentication
is Identity and Access Management. Both in the project and
later in the application, not everyone is supposed to have the
same level of access. In fact, according to the least privilege
principle, team members and users should only have access to
what they need, and nothing more. The necessary access
permissions to act in the system are stored in roles. Roles will
then be assigned to individuals. The team lead will regularly
have to check whether the roles are still up-to-date or need

adjusting.
Based on the possibility of hackers cracking a password or

getting access to it by means of social engineering, it is a best
practice to use multi-factor authentication (MFA) when logging
into the any part of the system, especially when doing so as the
root user. The development team lead must ensure this feature
is enabled throughout the entire project.

In most automated CI/CD-pipelines, API keys are used
instead of passwords. Being similar to passwords, they are
designed for use by machines [7]. But unlike most human
access methods which consist of a public username and a
private password, API keys are long random strings. Therefore,
they should never be stored and used in plain text and not be
hardcoded into any program.

Another relevant approach that the team should consider is
segregation of duties [8]. Along the lines of least privilege,
different users and accounts will be assigned different rights.
This way, the ramifications of a compromised account are
limited to the rights assigned. Especially in combination with
MFA the segregation of duties approach can be very powerful.

C. Cryptography

Cryptography will play a major role in the first three stages
of the DevOps lifecycle: PLAN, CODE, BUILD. It is here
where cryptography has to be taken into account the most, as
the later stages will not be able to add adequate levels of
encryption anymore once coding has passed an advanced point.
At the time of writing, a common approach to secure the flow
of data through networks is Transport Layer Security. But
amongst other limitations, containerized applications, e.g.,
Docker containers controlled by Kubernetes, are not included
in the security offered.

While the usage of data-at-rest encryption, i.e., the
encryption of data stored in a data base or data lake, has become
normal in production environments, data in transit is oftentimes
not so much in focus. The inability to analyze these data whilst
passing automatically and easily through network nodes is often
the main reason for development teams not doing so. However,
with hackers attacking web applications and their backend
components inside the defense perimeter of a network, this
would mean data in transit are not secure anymore. Therefore,
data in transit have to be protected by encryption, too, and at all
times.

To enable data in transit encryption, key management will
have to be implemented for each of the systems involved and a
public/private keypair as well as a signed certificate issued. The
challenge here is always the secrecy of the private key. In a
cloud-based environment like AWS, this can be done with tools
like the AWS Certificate Manager in combination with the
AWS Key Management Service. A more detailed discussion of
cryptographic algorithms can be found at NIST [9].

D. Network and Application Security

This section applies primarily to the later stages of the
DevOps lifecycle OPERATE and MONITOR. Most certainly,
the architects will have to integrate these scenarios in the
BUILD phase.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

303International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

6.
pd

f

For ease of programming, development environments
sometimes neglect security standards that apply to production
environments. This leaves the final release prone to security
gaps and should be avoided. API calls may serve as a point in
case here. In the very early stages of development, calls are
frequently mocked, before the real code is added. To avoid any
potential vulnerability later on, the requesting system should
apply a high security setting from the beginning on. Hence, the
requester system can consider using bearer token-based access
like OAUTH 2.0, the Open Authorization framework and
standard [10].

Along the same lines, Network Access Control lists and
firewalls need to be setup right from the beginning, instead of
allowing all traffic to flow freely.

A typical attack that needs to be prepared for is the
Distributed-Denial-of-Service attack. The objective of this
attack is to overwhelm an application or a network,
respectively, and bring the running system to a halt. Were it
only for a single attacking machine, a firefall could easily block
the IP address the attack is coming from. To avoid this,
distributed attacks use a network of bots (hijacked computers)
to confuse the defending system as to where the attack
originates from. Therefore, architects will have to use various
tools to mitigate this type of attack, e.g., load balancers,
deployment to multiple regions, Content Delivery Networks
that shield the IP addresses of the real applications, as well as
network traffic scanners that can alert a monitoring system once
unusual traffic patterns are detected.

According to the above introduced CIA principle, data read
by applications should be checked upon concerning its
integrity. Often, applications simply assume the data they rely
on to be correct. Here, a ‘Trust, but verify’ culture could be
applied [11]. The general idea is to trust the underlying data
sources, but the system be architected to be able to undergo a
regular self-audit and throw an error in case of a breach of
integrity.

E. Business Continuity and Disaster Recovery

When disaster strikes, the application should be still able to
run and serve the business. Rather than wait for a crisis,
organizations have to expect them [12]. In the DevOps
lifecycle, the following thoughts will need to be included when
the initial architecture is being derived, but also once the
application is up and running in the OPERATIONS stage.

One possible solution to securing business continuity here is
to run the application on multiple instances in at least two
geographically distant locations. Again, depending on the
business needs, the architects will have to make the decision
how to manage the failover scenario. In a hot link, the other
instance can take over immediately and traffic will be routed to
the backup system. In a warm or even cold scenario, the period
of switching to the backup takes successively longer.

Every change made to the production and development
environments should be stored in a trackable record. This is not
only necessary for potential rollbacks, but also for remedying
setups after attacks. Especially in a cloud-based environment,
the CI/CD pipelines should be completely scripted, in order to

automatically set up the system without the dangers of manual
misconfigurations. AWS Config may be used to keep historical
records of configurations and then have automated scripts use
these snapshots to recreate the system including volume and
database encryptions.

In a lot of cases, when the systems are being spun up,
machine images are used to ensure infrastructure setup can be
scripted. During this critical phase, a common attack vector
would be to inject malware into the scripts used. As a
consequence, images and scripts need to be protected or
checked that they have not been tampered with. One way of
doing this is to hash the file values and then check each time
before the images or scripts are run. The hash will return a
unique value for the input file and any changes to the source
would immediately result in a different value. So, in case
possible intruders have altered any images to make sure their
malware remains in the systems even after relaunch of the
system, a hash value will reveal the differences.

F. Penetration Testing

As the name already implies, penetration testing can be used
primarily at the test stage of DevOps. Drawing on the risk
management activities at the beginning of the life cycle, the
development team should have a good understanding of
possible vulnerabilities at this point. In addition, the top ENISA
vulnerabilities should be included in the approach [13], where
relevant.

Before commencing any testing, it is absolutely vital to get
adequate authorization from management and where
appropriate, from third parties. For example, the latter are
relevant when working in a cloud environment or with a
separate data center. Teams must be made aware that improper
permissions to test may even result in running the danger of
committing an offence under section 2 of the Criminal Justice
Act 2017, Offences Relating to Information Systems [14].

Mostly due to cost and complexity, DevOps teams
sometimes tend to security test the environment themselves or
have an enterprise security team test it via a ticketing service
[15]. This very much resembles a white-box test. This, of
course, does not speak against conducting any internal security
test. On the contrary, each sprint should include some standard
tests to ensure a basic degree of security of the system by
identifying any gaps as early as possible in the lifecycle.

However, for a full-scale security, test the point of view of a
potential attacker should be included. This can be done best by
bringing in specialized contractors to do this specific job. With
internal testers, the teams might tend to go the easy way and
attack the known vulnerabilities, which of course will have
been protected by the time of the test. An outside team, or at
least a separate team, will have to start from scratch and
therefore has a higher chance to find potential gaps. When
working with outside teams, a proper contact structure
including a master service agreement and individual statements
of work is recommended.

Depending on the industry the project is in, it might even be
required to have outside parties conduct the penetration testing.
In the banking, the PCI DSS standard requires participants to

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

304International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

6.
pd

f

have the tests done by an independent third party [16]. The
process and results must be fully documented and implications
discussed.

After testing has concluded, project management must
request a detailed walk-through of the approach taken and the
findings. This should be done by the provider of the penetration
testing job. The results should also be communicated and
explained to the sponsor of the DevOps project, as penetration
test findings are usually followed by budget discussions.

IV. CONCLUSION

This paper presented selected security elements that should
be taken into account when working on DevOps projects. Based
on the nature of this paper, this can only count as a starter and
there is much room for more research. Most certainly, this
approach needs to be operationalized to help teams better work
with it. A simple but straightforward idea would be to create an
extended checklist every project manager may use.

At the same time, in the very volatile and fast-developing
world of IT security tools and technologies, the company’s
knowledge must be kept up to date at all times. To do so, an
organization could establish an information strategy based on
three pillars:
1. Security news: For all the markets a company has

operations in, it is best practice to subscribe to relevant
security newsgroups and publications. Once subscribed,
organizational ownership should be assigned while
constantly monitoring these channels;

2. Courses and certifications: To maintain a broad
knowledge-base, team members will have to regularly
attend university courses and undergo relevant
certifications. For the Republic of Ireland, a good overview
has been provided by Carrol [17]. This can also be used to
prove existing knowledge to partners and customers. At the
same time, certifications can also help companies with
attracting and retaining much sought-after IT security
talent;

3. Industry groups: An interesting opportunity may arise
through inter-company collaboration in industry groups.
Latest IT security information and intelligence may be
shared as well as the latest international trends in how to
organize security structures, teams, and tools.
With all these skills added to the DevOps teams, another

challenge may evolve. Knowhow and tooling expertise
accumulated may become so specific and also hard to acquire
in the market, that the team develops into a silo [18]. This
organizational anti-pattern must be prevented. Therefore, the
security skills mentioned will have to be bundled into
repeatable internal learning blocks that new recruits can be
walked through and, at best, as stated in the above
information pillars, receive formal certification in.

REFERENCES
[1] J. Boehm, D. Dias, C. Lewis, K. Li, and D. Wallance, Cybersecurity

trends: Looking over the horizon. 2022, Available at:
https://www.mckinsey.com/capabilities/risk-and-resilience/our-
insights/cybersecurity/cybersecurity-trends-looking-over-the-horizon
(Downloaded: 04 November 2022).

[2] S. Comella-Dorda, J. Kaplan, L. Lau, and N. McNamara, N., Agile,
reliable, secure, compliant IT: Fulfilling the promise of DevSecOps, 2022.
Available at: https://www.mckinsey.com/capabilities/mckinsey-
digital/our-insights/agile-reliable-secure-compliant-it-fulfilling-the-
promise-of-devsecops (Downloaded: 19 October 2022).

[3] South Africa Government, Protection of Personal Information Act.
Available at: https://popia.co.za/ (Downloaded: 19 February 2023).

[4] H. Dhaduk, DevOps Lifecycle: 7 Phases Explained in Detail with
Examples. The Simform blog, 13 January 2022. Available at:
https://www.simform.com/blog/devops-lifecycle/ (Accessed: 19 October
2022).

[5] J. Morales, R. Turner, S. Miller, P. Capell, P. Place, and D.J. Shepard,
Guide to Implementing DevSecOps for a System of Systems in Highly
Regulated Environments. 2020, Carnegie Mellon University. Available
at: https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=638576
(Downloaded 19 October 2022).

[6] NIST National Institute of Standards and Technology, NIST Special
Publication 800-115. 2021, Available at https://www.nist.gov/privacy-
framework/nist-sp-800-115 (Downloaded 15 September 2022).

[7] C. Dotson, Practical Cloud Security. A Guide for Secure Design and
Deployment. 2019, 1st edn. Sebastopol, CA: O’Reilly Media, pp. 60-65.

[8] L. Rice, Container Security. Fundamental Technology Concepts that
Protect Containerized Applications. 2020 ,1st edn. Sebastopol, CA:
O’Reilly Media, pp. 11-20.

[9] NIST National Institute of Standards and Technology, Transitioning the
Use of Cryptographic Algorithms and Key Lengths. 2019, Available at
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final
(Downloaded 19 September 2022).

[10] J. Richer, A. Sanso, OAuth 2 in Action. 2017, 1st edn. Shelter Island, NY:
Manning.

[11] M. Kleppmann, Designing Data-Intensive Applications. The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. 2017, 1st edn.
Sebastopol, CA: O’Reilly Media, pp. 530-545.

[12] D. Telem, K. Sadek, H. Nijjar, and D. Knott, Crisis Management &
Business Continuity Guide. KPMG. 2020, Available at:
https://assets.kpmg/content/dam/kpmg/ca/pdf/2020/03/cyber-resilience-
crisis-business-continuity-planning-en.pdf (Downloaded: 19 October
2022).

[13] European Union Agency for Cybersecurity, ENISA Threat Landscape.
2021. Available at: https://www.enisa.europa.eu/publications/enisa-
threat-landscape-2021 (Downloaded 16 August 2022).

[14] International Comparative Legal Guides, Cybersecurity Laws and
Regulations Report 2022 Ireland. 2022, Available at:
https://iclg.com/practice-areas/cybersecurity-laws-and-
regulations/ireland (Accessed 04 November 2022).

[15] McKinsey and Company, Cybersecurity in the Digital Era. 2022,
Available at:
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/
Risk/Our%20Insights/Cybersecurity%20in%20a%20digital%20era/Cyb
ersecurity%20in%20a%20Digital%20Era.pdf (Downloaded 02
September 2022).

[16] PCI Penetration Test Guidance Special Interest Group Security Standards
Council, Penetration Testing Guidance. 2017, Available at:
https://listings.pcisecuritystandards.org/documents/Penetration-Testing-
Guidance-v1_1.pdf (Downloaded 19 October 2022).

[17] J. Carroll, Cybersecurity Training and Education in Ireland – Where do I
start?, Fortify Institute Blog, 12 June 2022. Available at:
https://www.fortifyinstitute.com/blog/cybersecurity-training (Accessed
05 November 2022).

[18] M. Skelton, M. Pais, Team Topologies. Organizing Business and
Technology Teams for Fast Growth. 2019, 1st edn. Portland, OR: IT
Revolution, p. 76.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:18, No:5, 2024

305International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

8,
 N

o:
5,

 2
02

4
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
64

6.
pd

f

