Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Failure Analysis of a 304 Stainless Steel Flange Crack at Pipeline Transportation of Ethylene

Authors: Parisa Hasanpour, Bahram Borooghani, Vahid Asadi

Abstract:

In the current research, a catastrophic failure of a 304 stainless steel flange at pipeline transportation of ethylene in a petrochemical refinery was studied. Cracking was found in the flange after about 78840h service. Through the chemical analysis and tensile tests, in addition to microstructural analysis such as optical microscopy and Scanning Electron Microscopy (SEM) on the failed part, it found that the fatigue was responsible for the fracture of the flange, which originated from bumps and depressions on the outer surface and propagated by vibration caused by the working condition.

Keywords: Failure analysis, 304 stainless steel, fatigue, flange, petrochemical refinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157

References:


[1] Marques, S.C.; Rezende, J.d.G.O.S.; Alves, L.A.D.F.; Silva, B.C.; Alves, E.; Abreu, L.R.D.; et al. (2007). “Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical sanitizers”. Brazilian Journal of Microbiology, Vol. 38, p.538-43.
[2] Wright, R.; (1976). “The high cycle fatigue strength of commercial stainless steel strip”. Materials Science and Engineering. Vol. 22, pp.223-230.
[3] Lei, L-P.; Hwang, S-M.; Kang, B-S.; (2001). “Finite element analysis and design in stainless steel sheet forming and its experimental comparison”. Journal of Materials Processing Technology. Vol. 110, pp. 70-7.
[4] Ha, T.K.; Jeong, H.T.; Sung, H.J.; (2007). “High temperature bending fatigue behavior of stainless steels for automotive exhaust”. Journal of Materials Processing Technology. Vol. 187–188, pp. 555-8.
[5] Shah, L.H.; Akhtar, Z.; Ishak, M.; (2013). “Investigation of aluminum-stainless steel dissimilar weld quality using different filler metals”. International Journal of Automotive and Mechanical Engineering. Vol. 8, pp. 1121-31.
[6] Jamil, W.; Aripin, M.; Sajuri, Z.; Abdullah, S.; Omar, M.; Abdullah, M.; et al. (2016). “Mechanical properties and microstructures of steel panels for laminated composites in armoured vehicles. International Journal of Automotive and Mechanical Engineering”. Vol. 13(3), pp. 3742-53.
[7] Lee, S.; Kim, H.; Yun, D-J.; Rhee, S-W.; Yong, K.; (2009). “Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices”. Applied Physics Letters. Vol. 95.
[8] Al-Bakri1, A.A.; Sajuri1, Z.; Abdulrazzaq, m.; Ariffin, a.k.; Fafmin, M.S.; (2017). “Fatigue properties of strained very thin 304 stainless steel sheets”. International Journal of Automotive and Mechanical Engineering, Vol. 14, Issue 2 pp. 4171-4182.
[9] Yan, Li.; (2012). “Fatigue crack initiation (in 304L steel): influence of the microstructure and variable amplitude loading”. Other. Ecole Centrale Paris, English. NNT: 2012ECAP0015, tel-00697002.
[10] Vickova, I.; Jonsta, P.; Vanova, P.; Kolova, T.; (2016). “Corrosion Fatigue of Austenitic Stainless Steels for Nuclear Power Engineering”. Metals. Vol. 6, 319.
[11] Pelliccione, A.S.; Coelho, P.C.; Lopes, D.E.B.; Ennes, C.S.B.; Jambo, H.C.M.; Santanna, R.; (2020). “Failure analysis of a stainless steel socket-welding flange due to improper manufacturing process and chemical composition”. Engineering Failure Anslysis. Vol. 108.
[12] Lu, J. S.; Xuan, H. F.; Xue, J.; (2015). “Failure Analysis of a 304 Stainless Steel Flange”. Advanced Materials Research. Vol. 1120–1121, pp. 1024–1028.
[13] Zhang, Y.; Shang, X.; Song, M.; Sun, Zh.; Zhu, Sh.; (2019). “Failure analysis of handhole flange cracking”. Engineering Failure Anslysis. Vol. 96, pp. 100-08.
[14] Pastorcic, D.; Vukelic, G; Bozic, Z; (2019). “Coil spring failure and fatigue analysis”. Engineering Failure Analysis, Vol. 99, PP. 310-318, doi: 10.1016/j.engfailanal.2019.02.017.
[15] Vukelic, G; Pastorcic, D.; Bozic, Z; (2020). “Failure investigation of a crane gear damage”. Engineering Failure Analysis, Vol. 115, 104613 doi: 10.1016/j.engfailanal.2020.104613.
[16] Zatkalíková, V.; Markoviová, L.; (2019). “Corrosion resistance of electropolished AISI 304 stainless steel in dependence of temperature”. Materials Science and Engineering, Vol. 465. doi:10.1088/1757-899X/465/1/012011.
[17] Furuya, Y.; (2016). “Small internal fatigue crack growth rate measured by beach marks”. Material science and engineering: A.Vol. 678, pp. 260-66.
[18] Sachs, P.E.; (2005).” Understanding the Surface Features of Fatigue Fractures: How They Describe the Failure Cause and the Failure History”. ASM International: Journal of Failure Analysis and Prevention. Vol. 5(2).
[19] Zhu, Y.; Wang, Y.; Huang, Y.; (2014). “Failure analysis of a helical compression spring for a heavy vehicle’s suspension system”. Engineering failure analysis, Vol. 2. Pp. 169-173.
[20] Yue, J; Yan, D; Soares, G; (2018). "An experimental-finite element method based on beach marks to determine fatigue crack growth rate in thick plates with varying stress states". Engineering Fracture Mechanics. Vol. 196, pp. 123-141.
[21] Singh, K; Sadeghi, F; Correns, M; Blass, T; (2019). "A microstructure based approach to model effects of surface roughness on tensile fatigue". International Journal of Fatigue. Vol. 129. https://doi.org/10.1016/j.ijfatigue.2019.105229
[22] Gockel, J; Sheridan, L; Koerper, B; Whip, B; (2019). "The influence of additive manufacturing processing parameters on surface roughness and fatigue life". International Journal of Fatigue. Vol. 124. pp. 380-388.
[23] Lai, J; Huang, H; Buising, W; (2016). "Effects of microstructure and surface roughness on the fatigue strength of high-strength steels". Procedia Structural Integrity. Vol. 2. pp. 1213-1220.
[24] Lund, R. A.; Sheybany, Sh.; (2002). “Fatigue fracture appearances”. Failure analysis and prevention. Vol. 11.
[25] Russell, A.L.; Sheybani, Sh.; (2002). “Failure analysis and prevention”. ASM handbook, Vol. 11. DOI: https://doi.org/10.31399/asm.hb.v11.a0003539.
[26] Bhaumik, S.K.; Rangaraju, R.; Venkataswami, M.A.; Bhaskaran, T.A.; Paramewara, M.A.; (2002). “Fatigue fracture of crankshaft of an aircraft engine”. Engineering failure analysis journal, Vol. 9, pp. 255-263.
[27] Furuya, Y.; (2019). “Gigacycle fatigue in high strength steels”. Science and Technology of Advanced Materials. Vol. 20 (1), pp. 643-56.
[28] Zhang, J; Li, S.X; Yang, Z.G; Li, G.Y; Hui, W.J; Weng, Y.Q; (2007). "Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime." International Journal of Fatigue. Vol. 29. pp. 765-771.