Evaluating the Durability and Safety of Lithium-Ion Batteries in High-Temperature Desert Climates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Evaluating the Durability and Safety of Lithium-Ion Batteries in High-Temperature Desert Climates

Authors: Kenza Maher, Yahya Zakaria, Noora S. Al-Jaidah

Abstract:

Temperature is a critical parameter for lithium-ion battery performance, life, and safety. In this study, four commercially available 18650 lithium-ion cells from four different manufacturers are subjected to accelerated cycle aging for up to 500 cycles at two different temperatures (25 °C and 45 °C). The cells are also calendar-aged at the same temperatures in both charged and discharged states for six months to investigate the effect of aging and temperature on capacity fade and state of health. The results showed that all battery cells demonstrated good cyclability and had a good state of health at both temperatures. However, the capacity loss and state of health of these cells are found to be dependent on the cell chemistry and aging conditions, including temperature. Specifically, the capacity loss is found to be higher at the higher aging temperature, indicating the significant impact of temperature on the aging of lithium-ion batteries.

Keywords: Lithium-ion battery, aging mechanisms, cycle aging, calendar aging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120

References:


[1] T.M. Gür, “Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage,” Energy Environ. Sci., vol. 11, pp. 2696-2767, 2018
[2] M.A. Hannan, M.S.H. Lipu, P.J. Ker, R.A. Begum, V.G. Agelidis, F. Blaabjerg, “Power electronics contribution to renewable energy conversion addressing emission reduction: applications, issues, and recommendations,” Appl. Energy, vol. 251, pp. 113404, 2019
[3] S. Pacala, R. Socolow, “Stabilization wedges: solving the climate problem for the next 50 years with current technologies,” Science, vol. 305, pp. 968-972, August 2004
[4] H. Zhang, H. Zhao, M.A. Khan, W. Zou, J. Xu, L. Zhang, J. Zhang, “Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries,” J. Mater. Chem., vol. 6, pp. 20564-20620, 2018
[5] G.L. Zhu, C.Z. Zhao, J.Q. Huang, C. He, J. Zhang, S. Chen, L. Xu, H. Yuan, Q. Zhang, “Fast charging lithium batteries: Recent progress and future prospects,” Small, vol. 15, pp. 1-14, 2019
[6] X. Lin, M. Salari, L.M.R. Arava, P.M. Ajayan, M.W. Grinstaff, “High temperature electrical energy storage: Advances, challenges, and frontiers,” Chem. Soc. Rev., vol. 45, pp. 5848-5887, 2016
[7] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol. 414, pp. 359-367, 2001
[8] J.B. Goodenough, Y. Kim, “Challenges for rechargeable Li batteries,” Chem. Mater., vol. 22, pp. 587-603, 2010
[9] C.K. Huang, J.S. Sakamoto, J. Wolfenstine, S. Surampudi, “The limits of low-temperature performance of Li-ion cells,” J. Electrochem. Soc., vol. 147, pp. 2893-2896, 2000
[10] G. Nagasubramanian, “Electrical characteristics of 18650 Li-ion cells at low temperatures,” J. Appl. Electrochem., vol. 31, pp. 99-104, 2001
[11] M. Brousselya, S. Herreyre, P. Biensan, P. Kasztejna,K. Nechev, R.J. Staniewicz, “Aging mechanism in Li ion cells and calendar life predictions,” J. Power Sources, vol. 97-98, pp. 13-21, 2001
[12] K. Amine, C.H. Chen, J. Liu, M. Hammond, A. Jansen, D. Dees, I. Bloom, D. Vissers, G. Henriksen, “Factors responsible for impedance rise in high power lithium-ion batteries,” J. Power Sources, vol. 97-98, pp. 684-687, 2001
[13] T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohfahrt-Mehrens, “Temperature dependent ageing mechanisms in Lithium-ion batteries - A Post-Mortem study,” J. Power Sources, vol. 262, pp. 129-135, 2014
[14] Y. Ji, Y. Zhang, C.Y. Wang, “Li-ion cell operation at low temperatures,” J. Electrochem. Soc., vol. 160, pp. A636-A649, 2013
[15] H.C. Shiao, D. Chua, H.P. Lin, S. Slane, M. Salomon, “Low temperature electrolytes for Li-ion PVDF cells,” J. Power Sources, vol. 87, pp. 167-173, 2000
[16] S.S. Zhang, K. Xu, T.R. Jow, “Low temperature performance of graphite electrode in Li-ion cells,” Electrochim. Acta, vol. 48, pp. 241-246, 2002
[17] P. Ramadass, B. Haran, R. White, B.N. Popov, “Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis,” J. Power Sources, vol. 112, pp. 614-620, 2002
[18] J.R. Belt, C.D. Ho, T.J. Miller, M.A. Habib, T.Q. Duong, “The effect of temperature on capacity and power in cycled lithium-ion batteries,” J. Power Sources, vol. 142, pp. 354-360, 2005
[19] Y. Zhang, C.Y. Wang, X. Tang, “Cycling degradation of an automotive LiFePO4 lithium-ion battery,” J. Power Sources, vol. 196, pp. 1513-1520, 2011
[20] T.G. Zavalis, M. Klett, M.H. Kjell, M. Behm, R.W. Lindström, G. Lindbergh, “Aging in lithium-ion batteries: Model and experimental investigation of harvested LiFePO4 and mesocarbon microbead graphite electrodes,” Electrochim. Acta, vol. 110, pp. 335-348, 2013
[21] M. Ecker, N. Nieto, S. Käbitz, J. Schmalstieg, H. Blanke, A. Warnecke, D.U. Sauer, Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries, J.Power Sources, vol. 248, pp. 839-851, 2014
[22] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, D. Riu, “A review on lithium-ion battery ageing mechanisms and estimations for automotive applications,” J. Power Sources, vol. 241, pp. 680-689, 2013
[23] M. Safari, C. Delacourt, “Aging of a Commercial Graphite/LiFePO4 Cell,” J. Electrochem. Soc., vol. 158, pp. A1123-A1135, 2011
[24] W.A. van Schalkwijk, B. Scrosati, “Advances in lithium-ion batteries,” Kluwer Academic/Plenum Publishers, New York, NY, 2002
[25] E. Sarasketa-Zabala, I. Gandiaga, L.M. Rodriguez-Martinez, I. Villarreal, “Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations,” J. Power Sources, vol. 272, pp. 45-57, 2014
[26] J. Wang, J. Purewal, P. Liu, J. Hicks-Garner, S. Soukazian, E. Sherman, A. Sorenson, L. Vu, H. Tataria, M.W. Verbrugge, “Degradation of lithium-ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives: Part 1, aging mechanisms and life estimation,” J. Power Sources, vol. 269, pp. 937-948, 2014
[27] J. Schmalstieg, S. Käbitz, M. Ecker, D.U. Sauer, “A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries,” J. of Power Sources, vol. 257, pp. 325-334, 2014
[28] D. Guyomard and J. M. Tarascon, “The carbon/Li1+xMn2O4 system,” Solid State Ionics, vol. 69, pp. 222-237, 1994
[29] A. Widodo, M.C. Shim, W. Caesarendra, B.S. Yang, “Intelligent prognostics for battery health monitoring based on sample entropy,” Expert Systems with Applications, vol. 38, pp. 11763-11769, 2011
[30] Y. Xing, K.L. Tsui, N. Williard, M. Pecht, “A comparative review of prognostics-based reliability methods for lithium batteries”, Prognostics and System Health Management Conference (PHM-Shenzhen), pp. 1-6, 2011.