Demystifying Full-Stack Observability: Mastering Visibility, Insight, and Action in the Modern Digital Landscape
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Demystifying Full-Stack Observability: Mastering Visibility, Insight, and Action in the Modern Digital Landscape

Authors: Ashly Joseph

Abstract:

In the era of digital transformation, full-stack observability has emerged as a crucial aspect of administering modern application stacks. This research paper presents the concept of full-stack observability, its significance in the context of contemporary application stacks, and the challenges posed by swiftly evolving digital environments. In addition, it describes how full-stack observability intends to provide complete visibility and actionable insights by correlating telemetry across multiple domains.

Keywords: Actionable insights, digital transformation, full-stack observability, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152

References:


[1] A. M. Joy, Performance comparison between Linux containers and virtual machines,” 2015 International Conference on Advances in Computer Engineering and Applications, Ghaziabad, 2015, pp. 342-346.
[2] Sridharan, C. (2018). Distributed Systems Observability: A Guide to Building Robust Systems. O'Reilly Media.
[3] Sajeev, S. (2023). 'An Overview of Project Management Application in Computational Fluid Dynamics'. World Academy of Science, Engineering and Technology, Open Science Index 195, International Journal of Industrial and Manufacturing Engineering, 17(3), 202 - 208
[4] A. Randazzo and I. Tinnirello, Kata Containers: An Emerging Architecture for Enabling MEC Services in Fast and Secure Way,” 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 2019.
[5] Sajeev, S. K. (2016). Sand Erosion of Gas-Liquid Cylindrical Cyclone Separators Under Gas Production and Low-Liquid Loading Conditions (Doctoral dissertation, University of Tulsa).
[6] Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems. O'Reilly Media.
[7] G. Rezende Alles, A. Carissimi and L. Mello Schnorr, Assessing the Computation and Communication Overhead of Linux Containers for HPC Applications,” 2018 Symposium on High Performance Computing Systems (WSCAD), São Paulo, Brazil, 2018, pp. 116-123.
[8] Rabl, T., & Gómez-Villamor, S. (2014). Nephele/PACTs: a programming model and execution framework for web-scale analytical processing. In Proceedings of the 1st ACM symposium on Cloud computing (SoCC '10). Association for Computing Machinery, New York, NY, USA, 119–130. DOI:https://doi.org/10.1145/1807128.1807141
[9] Sajeev, S. K. (2019). Particle Transport in Horizontal Pipes for Single-Phase and Multiphase Flows at Very Low Concentrations Including the Threshold Concentration. The University of Tulsa.
[10] A. Randazzo and I. Tinnirello, “Kata Containers: An Emerging Architecture for Enabling MEC Services in Fast and Secure Way,” 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 2019.
[11] Vieira, R. E., Sajeev, S., Shirazi, S. A., McLaury, B. S., & Kouba, G. (2015, June). Experiments and modelling of sand erosion in gas-liquid cylindrical cyclone separators under gas production and low-liquid loading conditions. In 17th International Conference on Multiphase Production Technology. OnePetro.
[12] A. B. S., H. M.J., J. P. Martin, S. Cherian and Y. Sastri, “System Performance Evaluation of Para Virtualization, Container Virtualization, and Full Virtualization Using Xen, OpenVZ, and XenServer,” 2014 Fourth International Conference on Advances in Computing and Communications, Cochin, 2014, pp. 247-250.
[13] Kareepadath Sajeev, S. (2020). Application of Deep Learning for Understanding Dynamic Well Connectivity (Doctoral dissertation).
[14] Zhou, X., Abel, D., Truffet, D., 1998. Data partitioning for parallel spatial join processing, in: Geoinformatica, Springer-Verlag. pp. 175-204.
[15] Sajeev, S., McLaury, B., & Shirazi, S. (2017). Critical Velocities for Particle Transport from Experiments and CFD Simulations. International Journal of Environmental and Ecological Engineering, 11(6), 548-552.
[16] Zhong, Y., Han, J., Zhang, T., Li, Z., Fang, J., Chen, G., 2012. Towards parallel spatial query processing for big spatial data, in: Proceedings of the 26th IEEE International Parallel and Distributed Processing Symposium Workshops, pp. 2085-2094.
[17] Sajeev, S., McLaury, B. S., & Shirazi, S. A (2018, June). Threshold Particle Concentration in Single-Phase and Multiphase Flow Sand Transport in Pipeline. 11th North American Conference on Multiphase Production Technology. OnePetro.
[18] Kwon, O., Li, K.J., 2011. Progressive spatial join for polygon data stream, in: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM.
[19] Parsi, M., Vieira, R., Sajeev, S. K., McLaury, B. S., and S. A. Shirazi. "Experimental Study of Erosion in Vertical Slug/Churn Flow." Paper presented at the CORROSION 2015, Dallas, Texas, March 2015.
[20] Kwon, O., Li, K.J., 2011. Progressive spatial join for polygon data stream, in: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM.
[21] Pahl, C., & Jamshidi, P. (2016). Microservices: a systematic mapping study. In Proceedings of the 6th International Conference on Cloud Computing and Services Science (CLOSER 2016) (pp. 137-146).
[22] Sajeev, Sajith K., Brenton S. McLaury, and Siamack A. Shirazi. "Experiments and Modelling of Critical Transport Velocity of Threshold (Very Low) Particle Concentration in Single-Phase and Multiphase Flows." BHR 19th International Conference on Multiphase Production Technology. OnePetro, 2019.
[23] Abel, D., Ooi, B., Tan, K.L., Power, R., Yu, J., 1995. Spatial join strategies in distributed spatial dbms, in: Proceedings of the 4th International Symposium on Advances in Spatial Databases
[24] Arabnejad, H., S. Sajeev, A. Guimmarra, R. Vieira, and S. A. Shirazi. "Experimental Study and Modeling of Sand Erosion in the Gas-Liquid Cylindrical Cyclone GLCC Separators." In SPE Annual Technical Conference and Exhibition. OnePetro, 2016.
[25] Bruno, R., & Rodrigues, H. (2019). Cloud-native applications: A case study to identify research topics. IEEE Access, 7, 143625-143635. DOI: 10.1109/ACCESS.2019.2945488.
[26] Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J., 1998. Scalable sweeping-based spatial join, in: Proceedings of the 24th International Conference on Very Large Databases, pp. 570-581.
[27] Huang, Y.W., Jing, N., Rundensteiner, E., 1997. Integrated query processing strategies for spatial path queries, in: Proceedings of the 13th International Conference on Data Engineering, pp. 477-486. doi:10.1109/ICDE.1997.582010.