
 
 

 

 
Abstract—Systems engineering is a holistic discipline that seeks 

to organize and optimize complex, interdisciplinary systems. With the 
growth of artificial intelligence, systems engineers must face the 
challenge of leveraging artificial intelligence systems to solve complex 
problems. This paper analyzes the integration of systems engineering 
and artificial intelligence and discusses how artificial intelligence 
systems embody the systems decision process (SDP). The SDP is a 
four-stage problem-solving framework that outlines how systems 
engineers can design and implement solutions using value-focused 
thinking. This paper argues that artificial intelligence models can 
replicate the SDP, thus validating its flexible, value-focused 
foundation. The authors demonstrate this by developing a machine 
vision mobile application that can classify weapons to augment the 
decision-making role of an Army subject matter expert. This practical 
application was an end-to-end design challenge that highlights how 
artificial intelligence systems embody systems engineering principles. 
The impact of this research demonstrates that the SDP is a dynamic 
tool that systems engineers should leverage when incorporating 
artificial intelligence within the systems that they develop.  
 

Keywords—Computer vision, machine learning, mobile 
application, systems engineering, systems decision process. 

I. INTRODUCTION 
HE focus of this study was to conduct an end-to-end 
application of systems engineering thinking and artificial 

intelligence (AI) to solve an engineering challenge. The 
contribution from this study is the analysis of the relationship 
between AI and systems engineering. Ultimately, this study will 
attempt to expand the use of systems engineering design 
principles in the development of AI and encourage future 
systems engineers to utilize AI techniques when solving 
engineering challenges.  

The expansion of AI systems is revolutionizing the modern 
world. AI and machine learning models solve problems and 
provide insights never thought possible. Because of the utility 
and potential of AI techniques, systems engineers must 
understand how to effectively leverage them. While the SDP is 
a flexible and universal process, the systems engineering 
community has yet to thoroughly discuss its implementation 
with AI. This study is significant because it will facilitate 
discussion on the integration of AI and systems engineering.  

We will demonstrate the interrelationships between AI and 
systems engineering in a real-world scenario: In a typical army 
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unit, there are several experienced non-commissioned officers 
(NCOs) who are experts at their jobs and know every detail 
relating to training, equipment, or personnel. Junior unit 
members, however, do not share the same level of expertise and 
therefore require guidance from the senior NCOs. The practical 
application of this study creates an AI tool to fill the role of the 
senior NCO for a specific task, therefore freeing the NCO to 
address other serious issues. The scenario used to demonstrate 
this problem is the task of identifying equipment and its 
common maintenance requirements. 

This study represents a balance of holistic and technical skill. 
The tangible product of this study is an end-to-end machine 
vision mobile application built with technical skills like coding, 
computer science, and mathematics. However, the significant 
contribution of this study is the exposed potential of the 
combination of the SDP’s approach to systems thinking and AI. 

II. BACKGROUND 
The SDP is a four-stage process that focuses on general 

problem-solving principles and value-focused thinking. Fig. 1 
visually represents the four stages of the SDP and its nested 
tasks. 

 

 

Fig. 1 The SDP [1] 
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The SDP is useful because it is versatile in its application. 
Therefore, the SDP will become exceedingly relevant as the 
combination of systems adds complexity that cannot be 
simplified by engineers creating more specific engineering 
processes [1].  

The SDP beings with a problem definition phase in which 
stakeholder analysis, value modeling, and requirement analysis 
occurs [1]. During the problem definition phase of SDP, the 
systems engineer attempts to fully understand the context and 
background of the problem, those individuals and organizations 
with a stake in the problem, and requirements that they must 
meet to solve the problem.  

The second phase of the SDP, the solution design phase, 
consists of idea generation, cost analysis, and alternative 
generation [1]. During this phase, the systems engineer will 
develop a variety of candidate solutions to the problem while 
also developing a method to assess cost. At the completion of 
the solution design phase, the systems engineer will have 
several potential solutions that they will be evaluate based on 
value and cost.  

The evaluation of each candidate solution takes place during 
the decision-making phase of the SDP. For each candidate 
solution, the systems engineer generates a trade space between 
value and cost and conducts sensitivity and tradeoff analysis 
[1]. The systems engineer then selects the best solution based 
on the value-cost tradeoff while also remaining cognizant of the 
output of the sensitivity and tradeoff analysis. Lastly, the 
systems engineer develops and improves the selected solution 
before the solution is executed. 

Planning, execution, and monitoring and controlling of the 
solution all take place within the solution implementation phase 
of the SDP [1]. After the decision maker decided upon a 
solution, the planning begins to ensure the effective execution 
of the solution. Oversight through monitoring and controlling 
are critical throughout planning and execution actions to ensure 
the solution is implemented in a manner consistent with 
stakeholder needs. 

Despite the SDP’s proven flexibility and versatility, the 
systems community has not yet analyzed its relationship with 
AI systems. Petrotta and Peterson studied the potential benefits 
of and an early framework for augmenting human intelligence 
with AI systems, but this field of study remains in its early 
stages [2].  

III. METHODOLOGY 

A. The Question of Integration 
The AI field is rapidly growing and continuing to solve 

complex problems. As the world and its systems become more 
complex and interdependent, systems engineers will need to 
learn how to leverage AI techniques to solve problems and 
support their informed decision making. Despite the need for 
the integration of AI and systems engineering, there have been 
problems with applying AI models to systems engineering, 
specifically software systems engineering [3]. Therefore, the 
question at hand is: how well are the SDP and AI models 
postured to integrate?  

At first glance, one may look to see where an AI model fits 
into the existing structure of the SDP. However, the integration 
of AI and systems engineering is much more complex than 
treating an AI model as a single component of the SDP. To 
answer this question, it is helpful to go back to the roots of the 
problem and realize what we are truly trying to integrate. As 
defined by Petrotta and Peterson, AI is the “theory and 
development of computer systems able to perform tasks that 
normally require human intelligence, such as visual perception, 
speech recognition, decision-making, and translation between 
languages” [2]. Considering this definition, the connection is 
made between the SDP and AI. AI models do not fit into the 
SDP as a supplemental tool, rather, AI models fulfill the SDP 
because they can perform the human-intelligent task of 
decision-making. If AI models are well designed, fully 
replicating a decision-making process, then the AI model 
fulfills the SDP. 

B. AI and the SDP 
The SDP begins with a problem definition phase in which the 

systems engineer grasps the scope of the problem and truly 
understands what factors they need to consider while decision 
making. An AI model performs problem definition in its 
inherent design. The first iteration of an AI model’s problem 
definition requires a software engineer to build the model in 
accordance with stakeholder analysis and the initial problem 
definition. However, after the model is trained, its design 
encapsulates the problem definition phase. In the example of a 
supervised classification AI system, the trained model, given an 
unlabeled piece of data, analyzes that piece of data with using 
model’s weights developed in the training process to be able to 
make an informed decision. Similarly, a systems engineer 
analyzes information related to a problem with respect to 
stakeholder value or weights in order to make the most 
informed decision possible. 

The second phase of the SDP is the solution design phase, in 
which a systems engineer generates potential solutions or 
alternatives to the problem. When creating a solution space, 
there is a key distinction between AI models and systems 
engineers. AI models are inductive learners, they learn from 
specific historical examples and generalize based on those 
specific examples. On the other hand, a systems engineer 
generally creates solution alternatives through deductive 
inference, essentially creating specific solutions based on 
general, holistic premises. For example, a systems engineer’s 
logic would argue: “All alternatives that meet these 
requirements are feasible. These three alternatives meet the 
requirements. Therefore, the three alternatives are feasible.” An 
example of an AI system’s inductive learning would say “All 
alternatives with this attribute have been deemed feasible. 
Alternative 1 has this attribute. Alternative 1 is likely feasible.” 
Regardless of the difference in learning reasoning used to create 
a solution space, an AI system creates a solution space, 
nonetheless.  

In the third phase of the SDP, a systems engineer chooses the 
best alternative available using value-focused thinking. AI 
models also conduct a decision-making phase in which they use 
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value to make a decision, or prediction. AI models commonly 
define value as accuracy. A predictive AI model assigns the 
most value to an alternative with the highest probability, based 
on inductive learning from data. Regardless of the metric, AI 
models fundamentally use value to make a decision, just as a 
systems engineer does. 

In the last phase of the SDP, solution implementation, a 
systems engineer plans, executes, and controls their chosen 
alternative. The solution implementation phase for an AI model 
is limitless in its opportunities. An AI model may be a part of a 
larger AI system. An AI model is the computer program that 
processes the data and performs the mathematics and prediction 
generation. The AI system would include sensors that collect 
the data, the model that performs the algorithms, and software 
that takes the model output and gives direction to hardware to 
perform an action. An example of this would be the AI system 
in a self-driving car. The self-driving car takes in real-time data 
from its environment, performs the algorithm to interpret the 
data, and responds to the algorithm output by applying the 
brakes, turning the steering wheel, or continuing its path. 
Additionally, a software engineer can design a feedback loop 
an AI model for control. Essentially, if the AI model makes an 
incorrect decision or prediction, the feedback loop will route 
that prediction back into the model as input to retrain the model 
for a more accurate decision in the future. AI models are fully 
capable of implementing, executing, and controlling decisions 
that it makes, just as a systems engineer does. 

An AI model’s replication of the SDP is a true validation of 
the design of the SDP, given that the SDP’s genesis preceded 
the AI revolution. The SDP’s flexibility and holistic framework 
makes it applicable to the AI field. The SDP can be a powerful 
roadmap for AI engineers to design AI models and AI systems 
to meet stakeholder requirements. An AI model designed using 
the SDP would effectively capture the systems engineering 
process, facilitating more efficient and effective AI models. 

IV. PRACTICAL APPLICATION OF AI AND SYSTEMS 
ENGINEERING 

A. Machine Vision Background 
This study utilizes a machine vision case study to show the 

utility of the SDP in designing an AI system. Machine vision 
AI systems replicate human vision tasks like image 
classification. One of the utilities of machine vision AI systems 
is the ability to complete the complex task of image 
classification. A software developer may adjust a machine 
vision AI system in numerous ways to fit the need of the 
problem they are attempting to solve. Significantly, a software 
developer can optimize machine vision AI models by 
manipulating data, utilizing transfer learning, and model 
compression to allow the model to be deployable on a variety 
of devices. 

Because of the importance of data quality and quantity, the 
data collection stage of building an AI model is arguably the 
most important and most time-consuming stage. Image data 
augmentation is an especially important data acquisition 
technique with respect to machine vision. Image augmentation 

can be very helpful when image data are not readily available. 
Image augmentation is essentially the transformation of image 
data to enrich the dataset and prevent model overfitting by 
integrating controlled variance into a dataset. An image 
recognition model will perform better if the software developer 
uses data with built-in variance in lighting, color, orientation, 
etc. [4]. 

Transfer learning is a process in which a developer uses the 
base network of a pre-trained model and only conducts training 
on the top layers of the model. Transfer learning takes 
advantage of the pre-trained model’s ability to recognize higher 
level features and objects while allowing the developer to fine 
tune the model to the intended research task by training only the 
top few layers [5]. There are many state-of-the-art pre-trained 
models that developers have open-sourced and are available for 
software engineers to leverage with transfer learning. One of 
these models, MobileNet, is particularly well-suited for 
machine vision mobile applications [5].  

Utilizing transfer learning and MobileNet architecture, a 
developer can train a custom image classification model, but 
must find a way to convert their model to a mobile-friendly 
version. This can be done by using model optimization tools, 
like TensorFlow Lite, which performs several optimizing 
functions to accelerate model speed, efficiency, size, and 
accuracy for mobile use [5]. In addition to model optimization, 
software engineers may use model compression techniques to 
further reduce model size and allow for mobile deployment [6]. 
Model compression is an effective way to reduce model size for 
mobile deployment while improving model performance. 

B. Practical Application Scenario 
To demonstrate AI’s validation of the SDP, we performed a 

practical demonstration. The application of conclusions made 
regarding the integration of AI and systems engineering will 
guide the methodology used to address the scenario of limited 
equipment subject matter expertise in an Army unit. 
Traditionally, equipment maintenance knowledge and expertise 
are consolidated within several SMEs (NCOs or Warrant 
Officers). This is simply a result of knowledge gained from 
years of experience working with specific Army equipment. 
New soldiers and junior NCOs, however, do not have the same 
subject matter expertise would benefit from an AI system. The 
expertise and leadership of the senior NCO could never be 
replaced; however, an AI tool would allow the NCO to focus 
less time on maintenance and more time leading and developing 
soldiers. The initial concept of this tool was to create a mobile 
application that could identify Army equipment using a 
machine vision model and return common part failures and 
other maintenance data corresponding to that piece of Army 
equipment. 

C. Data Collection and Preparation 
Creating an image classification machine vision model began 

with data collection. To reduce complexity of the initial model 
design, we selected the M4, M240, and M9 weapon systems to 
be the primary weapons classes. We created an initial image set 
for each weapon system by physically taking pictures of the 
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weapon system from different angles and with different 
backgrounds. Fig. 2 displays example data from the initial 
image dataset. 

 

 

Fig. 2 Initial Image Data Examples: M9, M4, M240, respectively 
 

Using the initial image data set, we performed image 
augmentation to create a large enough data set to train an 
effective model. 75 images belonging to the three weapons 
classes composed the initial data set. Performing the image 
augmentation yielded 5,986 images for training the model and 
2,687 images for validating the model. The objective of the 
image augmentation was to create a robust data set to properly 
train and validate the model. 

D. Model Training, Validation, and Evaluation  
With the full image data set on hand, model building could 

begin. We leveraged transfer learning in building the model to 
take advantage of a pretrained model architecture already 
oriented towards mobile deployment. MobileNetV2 is a mobile 
architecture with its lower-level layers already trained to 
perform image classification on the 1000-class ImageNet 
dataset [7]. Because MovileNetV2’s developers designed the 
architecture to be a compact, efficient image classifier, it was 
not necessary to retrain the entire model. Adding and training a 
dense and softmax layer will add weights to the model that are 
specific to classifying the weapon systems while retaining the 
lower-level features already present. Fig. 3 highlights the new 
model summary, a combination of MobileNetV2 and the added 
layers. 

 

 

Fig. 3 Model Summary 

To finish the data preparation process, we divided the 5,985 
training images by class, resulting in 1999 M4 images, 1566 
M240 images, and 2420 M9 images. The 2,687 validation 
images were also divided by class, resulting in 1073 M4 
images, 716 M40 images, and 894 M9 images. Lastly, we used 
17 random weapons images from the internet as test images. 
Fig. 4 displays images from the test image dataset.  

 

 

Fig. 4 Test Image Data: M4, M9, M240, respectively 
 

With the training, validation, and test image data prepared, 
we could proceed to compile and train the model. The model 
summarized in Fig. 3 was compiled using the Adam 
optimization algorithm, a categorical cross entropy loss 
function, and used model accuracy as the metric of interest. 
Prior to training the model, we implemented early stopping and 
model checkpoints to avoid unnecessary training after reaching 
the optimal validation accuracy and to save the optimal model 
weights to avoid retraining the model in the future. We trained 
the model for seven epochs with a batch size of 800 images. 
Fig. 5 displays the Training and Validation Accuracy and Loss.  

 

 

Fig. 5 Training and Validation Accuracy and Loss Plots 
 

We evaluated the model using the test data and returned a 
loss of 82.34%. The visual representation of the evaluation 
process displays the test images with their respective 
classifications in a matrix. A “1” in indicates the prediction with 
each column corresponding to an image class: M240, M4, and 
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M9, respectively. Fig. 6 displays that visual representation of 
the evaluation process.  

 

 

Fig. 6 Visual Representation of Evaluation Process with 
Classification Matrix 

 
Looking at the classification matrix, the model incorrectly 

classified the first image, indicated by the “1” in the M240 
column. This incorrect prediction is likely due to the soldier in 
the image. The training image data did not include any soldiers 
holding the M4, therefore the model did not learn how to 
classify the M4 with the addition of the soldier. We could avoid 
similar incorrect predictions in the future by including images 
of soldiers holding the M4 in the training data. However, the 
model correctly classified images two, three, four and five, as 
indicated by the “1”s placed in the correct column in the 
classification matrix. This prediction result follows the 82% test 
accuracy. The test images dataset included images from the 
internet that were not in the training set to reflect the practical 
application of the model. When soldiers use the application, 
there will likely be different attachments on the weapon systems 
and the backgrounds of the images may not be a solid color. 
Using different test images that included these variations 
validated that the model could recognize the weapon system 
regardless of the background and potential modifications to the 
weapon system.  

This prediction model file was 253MB and too large to use 
on a mobile device. In order to be able to use the model file on 
a mobile app, we compressed the model using post-training 
quantization. Post-training quantization converts a full-size 
model into a compressed file while also improving model 
efficiency with little effect on model accuracy. We used 
dynamic range quantization to convert and compress the model 
because of its relative simplicity and high compression 
capability. After converting and compressing the model, its file 
size was 18MB, a 93% reduction in size. With the significant 
reduction in size, the model was ready for mobile deployment.  

D. Mobile Application Development  
Development of the mobile application began with 

leveraging an open-source application framework developed by 
TensorFlow [8]. The TensorFlow application framework 
already included code and the structure for a quantized 
classification model and therefore, all that was required was to 
replace the default quantized model with the custom quantized 
project model and adjust the supporting code to account for the 
class changes. After changing the application aesthetics, the 
application successfully runs on mobile Android devices and 
was able to classify the weapons of interest using the device’s 
camera. We tested the application on the Samsung Galaxy S8 
Active running the Android 9.0 operating system. Fig. 7 

displays a screenshot of the application running on the external 
mobile device while actively classifying a weapon system. The 
application also displays the probability of each class prediction 
given the image rendered by the device camera. This is a useful 
feature because it captures the confidence of the model’s 
prediction. 

 

 

Fig. 7 Weapons Classifier Application Running on Mobile Device 

V. CONCLUSION AND RECOMMENDATION FOR FUTURE 
RESEARCH 

A. Practical Application Conclusions and Recommendations 
The successful development of an image classification 

mobile application was a practical example of how AI systems 
validate and replicate the SDP. The design of the application 
and model training represented the problem definition phase of 
the SDP. Knowing that the stakeholders for the model would 
primarily be junior soldiers, we designed the model to be 
deployed on an easy-to-use mobile device application. During 
model training, the model generated weights using image data 
that the model would use later when classifying new objects. 
Essentially, the model analyzed weapon image data and learned 
what parts of the image data it needed to consider when making 
a classification. This process is similar to how a systems 
engineer conducts research and stakeholder analysis to 
understand what they need to consider when making a decision. 

The development of the different weapons classes and model 
weights reflected the solution design phase of the SDP. 
Following the inductive learning technique that AI systems use, 
the model creates a solution space based on its learning from 
the labelled weapons images. The AI model’s weights represent 
specific attributes that correspond to a known weapon system. 
When the model processed a new image to classify, it analyzed 
the image and looked for specific attributes. Any classification 
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that had attributes that matched the unknown weapon would be 
added to the solution space. The model’s logic can be stated as, 
“Any weapons classes with these specific attributes are 
potentially the unknown weapon system. I have learned that the 
M4 and M240 weapons classes have those specific attributes. It 
is likely that the unknown weapon is an M4 or M240.” While a 
systems engineer would traditionally use deductive reasoning 
to generate alternatives, the AI model selects among 
alternatives, nonetheless.  

The AI model performs the decision-making phase of the 
SDP when it calculates accuracy for each of its predictions. A 
systems engineer uses value-focused thinking when making a 
decision to select the alternative with the most value. Similarly, 
the AI model defines value as confidence, or probability, and 
classifies the unknown weapons system based the highest 
probability. Fig. 5 displays the probability of each prediction to 
the right of the classification.  

The software engineer can add supplementary functionality 
to the mobile application to fully complete the solution 
implementation phase of the SDP. The AI model made a value-
focused prediction and presented the weapons classification. 
That classification could return maintenance data, common 
faults, or specifications for the weapon system. Finally, the 
application could include a feedback-loop to constantly re-train 
the model when it makes an incorrect weapons classification, 
based on user feedback. Similar to a systems engineer, the AI 
model can implement its decision depending on the needs of the 
stakeholder. 

B. Future Research  
 Future research that focuses on expanding the functionality 

of the weapons classifying mobile application would be helpful 
in demonstrating the variety of opportunities that come from 
implementing an AI model’s classifications. These features 
would more fully illuminate the fulfillment of the SDP’s 
solution implementation phase. Additionally, the systems 
engineers can further refine the SDP to facilitate integration 
with AI systems by specifying a data collection phase during 
problem definition. Although the problem definition phase 
includes background research, the data collection process is so 
essential to developing a quality AI model, it needs to be 
enumerated. Additionally, even without the application of an AI 
model, data collection is still relevant to the SDP, reminding 
systems engineers to collect enough quality data to make an 
informed decision.  

C. Conclusion 
The relationship between systems engineering and AI is 

becoming increasingly important as the modern world becomes 
more interdependent and reliant on AI systems. This study has 
shown that AI systems can effectively replicate the SDP and 
help systems engineers make informed decisions. AI’s inherent 
ability to replicate the SDP also validates the SDP as an 
effective decision-making process based on objective reasoning 
and value-focused thinking. In the future, systems engineers 
should consider how to effectively leverage AI systems to 
supplement their problem-solving processes. This will result in 

more intelligent systems that can benefit from the value 
provided by AI. 
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