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Abstract—This works deals with the finite element approximation
of axisymmetric problems. The weak formulation of the heat equation
under axisymmetry assumption is established for continuous finite
elements. The weak formulation is implemented in a C++ solver
with implicit time marching. The code is verified by space and
time convergence tests using a manufactured solution. An example
problem is solved with an axisymmetric formulation and with a 3D
formulation. Both formulations lead to the same result but the code
based on the axisymmetric formulation is mush faster due to the lower
number of degrees of freedom. This confirms the correctness of our
approach and the interest of using an axisymmetric formulation when
it is possible.

Keywords—Axisymmetric problem, continuous finite elements,
heat equation, weak formulation.

I. INTRODUCTION

WHEN the geometry of the system, the source terms and

the initial/boundary conditions are roughly symmetric

with respect to a certain axis, it may be interesting to treat

the problem as axisymmetric due to the substantial cut in

the computational cost that results. This configuration may

arise in applications such as moisture and heat transfer in a

reactor vessel [1], induction heating [2] or cylindrical bodies

at high temperature in machine parts [3]. It is nevertheless

not trivial to derive the weak formulation that needs to be

solved when this choice is made. The problem is still 3D but

the solution depends on the two cylindrical coordinates (r, z)
only. Following the arguments used in the work [4] on the

compressible Euler equations, we establish the axisymmetric

weak formulation for the heat equation. We then present an

illustrative numerical result which shows the computational

efficiency of an axisymmetric formulation with respect to a

(full) 3D formulation.

We consider homogeneous Dirichlet boundary conditions.

Denoting by Ω the axisymmetric computational domain, by

∂Ω its boundary (the boundary of a domain is always indicated

by the symbol ∂ in the article) and by T > 0 the time limit,

the problem is expressed⎧⎪⎨
⎪⎩
∂tu−∇·(κ∇u) = f in Ω× [0, T ],

u = 0 on ∂Ω× [0, T ],

u|t=0 = u0 in Ω,

(1)

where u is the unknown solution field, κ is the diffusivity

parameter, f is an axisymmetric source term and u0 is an

axisymmetric initial condition.
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Fig. 1 Example of cylindrical domain of computation Ω and the associated
meridian section Ω2D . A point M ∈ Ω is located by its cylindrical

coordinates (r, θ, z), with (r, z) ∈ Ω2D and θ ∈ [0, 2π)

II. AXISYMMETRIC WEAK FORMULATION

We assume that we look for an axisymmetric solution.

One needs to define an appropriate function space of

approximation. We use the cylindrical coordinates (r, θ, z). Let

us note Ω2D the half-meridian section, say at θ = 0, of Ω. We

denote by ∂Ω2D
ext = ∂Ω2D∩∂Ω the exterior boundary of Ω2D.

An illustration is presented in Fig. 1. We denote by Th a mesh

of Ω2D with characteristic mesh size h. A cell of Th is denoted

by K. In order to build the approximation space, we define

the space

V 2D
h =

{
vh ∈ C0

(
Ω2D;R

)
; vh|K ∈ Pp, ∀K ∈ Th,
and vh = 0 on ∂Ω2D

ext

}
, (2)

where p ∈ N
∗ is the order of the polynomial approximation.

The approximation space is

Vh =
{
vh ∈ C0

(
Ω;R

)
; ∃v2Dh ∈ V 2D

h ;

vh(r, θ, z) = v2Dh (r, z), ∀(r, θ, z)
}
. (3)

The functions of Vh are axisymmetric by definition. One can

verify that they also satisfy vh|∂Ω = 0.

The approximate weak formulation is obtained by

multiplying the first line of (1) by a test function and by then

integrating over Ω. The divergence theorem and the fact the

test functions cancel on ∂Ω allow to re-write the diffusive

World Academy of Science, Engineering and Technology
International Journal of Physical and Mathematical Sciences

 Vol:16, No:11, 2022 

103International Scholarly and Scientific Research & Innovation 16(11) 2022 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 P
hy

si
ca

l a
nd

 M
at

he
m

at
ic

al
 S

ci
en

ce
s 

V
ol

:1
6,

 N
o:

11
, 2

02
2 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

77
7/

pd
f



term. We can finally express the weak formulation as: find

uh ∈ C1([0, T ];Vh) such that⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

duh

dt
(t)vhdV +

∫
Ω

κ∇uh(t) · ∇vhdV =

∫
Ω

f(t)vhdV,

∀t ∈ [0, T ], ∀vh ∈ Vh,

uh(0) = u0h,
(4)

where u0h ∈ Vh is an approximation of u0. Note that we have

not used the axisymmetry assumption yet.

Let g be a function defined in Ω. Because Ω is axistmmetric,

we can express the integral over Ω as the integral over Ω2D

of the integral over the azimuthal direction (i.e. over a ring of

coordinates (r, z) ∈ Ω2D):∫
Ω

gdV =

∫
Ω2D

(∫ 2π

θ=0

grdθ

)
dS. (5)

The elementary volume is dV = rdrdθdz and the elementary

surface is dS = drdz. Let us assume that g is axisymmetric.

We have then∫ 2π

θ=0

g(r, θ, z)rdθ = 2πg2D(r, z)r, ∀(r, z) ∈ Ω2D, (6)

where g2D ≡ g|Ω2D . By combining (5) and (6), we can write∫
Ω

gdV = 2π

∫
Ω2D

g2DrdS. (7)

This formula will allow us to simplify the weak formulation

(4).

The trial function, the test functions and the source term are

axisymmetric so we can apply (7) to every term of the first

line of (4). Note that, in particular due to axisymmetry,

∇uh · ∇vh = ∂ruh∂rvh + ∂zuh∂zvh =

∂ru
2D
h ∂rv

2D
h + ∂zu

2D
h ∂zv

2D
h = ∇u2D

h · ∇v2Dh , (8)

where u2D
h and v2Dh are the functions defined in Ω2D

associated to uh and vh according to definition (3). Looking

for uh ∈ Vh is equivalent to looking for the associated uh ∈
V 2D
h . Testing by every vh ∈ Vh is equivalent to testing by the

3D-extension of every v2Dh ∈ V 2D
h . Considering all of this, we

can equivalently express (4) as: find u2D
h ∈ C1([0, T ];V 2D

h )
such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫
Ω2D

du2D
h

dt
(t)v2Dh rdS +

∫
Ω2D

κ∇u2D
h (t) · ∇v2Dh rdS =∫

Ω2D

f2D(t)v2Dh rdS, ∀t ∈ [0, T ], ∀v2Dh ∈ V 2D
h ,

u2D
h (0) = u2D

0h ,
(9)

where f2D ≡ f|Ω2D and u2D
0h ∈ V 2D

h is an approximation of

u0|Ω2D . The weak formulation (9), referred as axisymmetric

weak formulation in this article, is similar to that of a 2D heat

equation with homogeneous Dirichlet boundary conditions

except for the r factor in every term and the fact that the

trial and test functions are not necessarily zero at the axis, i.e.

the fact that only the exterior boundary of Ω2D is a Dirichlet

boundary.

III. MATRIX FORM OF THE WEAK FORMULATION

Let {ϕi}i∈[|1,ndof |] be a basis for V 2D
h , with ndof ∈ N

∗

the number of degrees of freedom. We denote by U ∈
C1([0, T ];Rndof ) the vector function containing the degrees

of freedom of u2D
h :

u2D
h (t) =

ndof∑
j=1

Uj(t)ϕj , ∀t ∈ [0, T ]. (10)

We denote by U0 ∈ R
ndof the vector containing the degrees

of freedom of u2D
0h .

The weak formulation (9) is equivalent to the system of

ODEs: find U ∈ C1([0, T ];Rndof ) such that⎧⎨
⎩M

dU

dt
(t) +KU(t) = F (t), ∀t ∈ [0, T ],

U(0) = U0,
(11)

where M ∈ R
ndof×ndof is the mass matrix defined by

Mij =

∫
Ω2D

ϕjϕirdS, ∀(i, j) ∈ [|1, ndof |]2, (12)

K ∈ R
ndof×ndof is the stiffness matrix defined by

Kij =

∫
Ω2D

κ∇ϕj · ∇ϕirdS, ∀(i, j) ∈ [|1, ndof |]2, (13)

and F ∈ F([0, T ];Rndof ) is the vector source term defined by

Fi(t) =

∫
Ω2D

f2D(t)ϕirdS, ∀i ∈ [|1, ndof |], ∀t ∈ [0, T ].

(14)

Note the presence of the r factor in all of the coefficients and

the fact that all the ϕi are not zero at the axis.

IV. TIME DISCRETIZATION

The time approximation of (11) is constructed by using an

implicit Euler scheme. Let N ∈ N∗. We denote by Δt = T/n
the time step and we note tn = nΔt, ∀n ∈ [|0, N |]. We

denote by un
h and Un an approximation of uh(tn) and U(tn),

respectively. We note

uΔt = (u|t=tn)n∈[|0,N |], uhΔt = (un
h)n∈[|0,N |]. (15)

After initializing U0, the algorithm consists in solving for

every n ≥ 0:{
kn+1 = A−1(−KUn + F (tn+1)),

Un+1 = Un + kn+1Δt,
(16)

where kn+1 is an approximation of dU
dt (tn+1) and

A = M +ΔtK. (17)

The algorithm is implemented in a C++ code based on the

MFEM library for finite elements [5].
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Fig. 2 Manufactured solution field in Ω2D at t = 1. The symmetry axis is
the left vertical border (r axis = X axis, z axis = Y axis). Parameters:

κ = 2, h = 0.025, Δt = 10−4

V. VERIFICATION ON A MANUFACTURED SOLUTION

Before solving an actual problem, we verify that the

space and time approximations are correctly implemented by

performing a convergence test on a manufactured solution. We

consider the cylindrical domain

Ω = {(r, θ, z) ∈ R
3; 0 ≤ r < 0.5, 0 ≤ θ < 2π, 0 < z < 1}

(18)

and the manufactured solution

u(r, θ, z, t) = (r2(sin(2πr)− 1) + 0.25) sin(2πz) cos(2πt).
(19)

An illustration of the solution is presented in Fig. 2. f and u0

are set so that u defined in (19) is solution of (1):

f = ∂tu−∇·(κ∇u) (20)

and

u0(r, θ, z) = (r2(sin(2πr)− 1) + 0.25) sin(2πz). (21)

The convergence test is performed on the norm

‖uΔt − uhΔt‖l∞ = max
0≤n≤N

‖u|t=tn − un
h‖L2(Ω). (22)

The L2-norm is computed over Ω but computing it over Ω2D

does not change the conclusion of the convergence test. The

mesh is triangular. The order of the polynomial approximation

is p = 1.

We first study the evolution of the error with the mesh size.

We use a rather strong diffusivity to weaken the importance

of the time derivative term and we fix the time step to a very

small value. The time step error is then neglectable compared

to the mesh size error. The results are presented in Tab. I. The

computed order of convergence (COC) converges toward k+
1 = 2, which is consistent with the theory. See Theorem 6.29

in [6, p. 296].

We then study the evolution of the error with the time step.

We use a rather weak diffusivity to strengthen the importance

of the time derivative term and we fix the mesh size to a very

small value. The mesh size error is then neglectable compared

to the time step error. The results are presented in Tab. II. The

TABLE I
MESH SIZE CONVERGENCE TEST

h ‖uΔt − uhΔt‖l∞ COC

0.1 0.012280034 -

0.05 0.0032256946 1.929

0.025 0.00081782067 1.98

0.0125 0.00020608841 1.989

Diffusivity κ = 2. Fixed small time step Δt = 10−4. Time limit T = 1

TABLE II
TIME STEP CONVERGENCE TEST

Δt ‖uΔt − uhΔt‖l∞ COC

0.1 0.023979616 -

0.05 0.012747723 0.912

0.025 0.0066965764 0.929

0.0125 0.0034543529 0.955

Diffusivity κ = 0.1. Fixed small mesh size h = 0.0125. Time limit T = 1

COC converges toward 1, which is consistent with the theory,

see the same theorem.

VI. COMPARISON OF THE AXISYMMETRIC FORMULATION

WITH A 3D FORMULATION

The goal of this section is to compare the solution given by

the code based on the axisymmetric weak formulation and that

given by a code based on a 3D weak formulation, i.e. a weak

formulation of problem (1) with trial/test functions defined

in Ω and not necessary axisymmetric (but still piecewise

polynomial and of the same order as for the axisymmetric

weak formulation), and to compare the execution times.

A. Problem setup

We use the same domain Ω defined in (18). We define

Ωs = {(r, θ, z) ∈ R
3;

0 ≤ r < 0.35, 0 ≤ θ < 2π, 0.15 < z < 0.85}, (23)

a subdomain of Ω, and set the source term as

f(r, θ, z, t) =

{
1 in Ωs × [0, T ],

0 in Ω \ Ωs × [0, T ].
(24)

The initial condition is

u0(r, θ, z) = 0 in Ω. (25)

The physical problem corresponding to this setup is that

of a cylindrical piece of material, initially at an uniform

temperature, in which a constant heat source (generated by

an electrical current for instance) is turned on at t = 0 while

its boundaries are maintained at the initial temperature.

The axisymmetric computation is performed with a

triangular mesh while the 3D computation is performed with

a tetrahedral mesh, both with characteristic mesh size h. The

order of the polynomial approximation is p = 1.
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Fig. 3 Energy (see definition in (26)) as a function of time for different
values of diffusivity and for axisymmetric or 3D computation

B. Comparison of the Results

We first compare the solutions given by the axisymmetric

and 3D approaches. In this subsection, we use h = 0.025 and

Δt = 0.025. We run the computation until a steady state is

reached. We know that it is the case by monitoring the energy

E =

∫
Ω

udV, (26)

which then reaches a constant value, see Fig. 3. No matter

the diffusivity, the axisymmetric and 3D formulations lead to

a very close value of energy. The higher the diffusivity, the

higher the heat transfer rate, the faster the steady regime is

reached.

We compare the solutions given by the axisymmetric

formulation and the 3D formulation at final time t = 1. The

solution field is shown in Fig. 4 (axisymmetric) and Fig. 5

(3D). The fields given by both formulations are very close.

The small difference, seen for the maximum value of u in

the legend for instance, may be due to numerical errors. It

may also be due to the fact that the tetrahedral mesh does not

perfectly form a partition of Ω due to its curvature.

The profiles of the steady solution at mid-height for different

diffusivities are presented in Fig. 6. These profiles confirm that

the fields given by both formulations are almost identical. At

steady state, the heat power that is injected is equal to the heat

power that escapes the system. The higher the diffusivity, the

weaker the temperature gradient needed to produce the heat

flux, the lower the temperature in the central part.

C. Comparison of the Execution Times

We now compare the execution times needed by the

axisymmetric and 3D codes to solve the problem (when using

the same mesh size). The execution time needed by the

axisymmetric code is naturally much lower than that needed

by the 3D code due to the lower number of degrees of freedom

involved. To illustrate this, we study the ratio of the numbers

of degrees of freedom

Rdof =
ndof in 3D

ndof in axi
(27)

Fig. 4 Field of u in Ω2D at t = 1 (κ = 0.5) by axisymmetric computation
(r axis = X axis, z axis = Y axis)

Fig. 5 Field of u in a half-section of Ω at t = 1 (κ = 0.5) by 3D
computation

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0 0.1 0.2 0.3 0.4 0.5

κ = 0.5

κ = 1

κ = 2

u

r

���

��

Fig. 6 Radial profile of u at θ = 0, z = 0.5 and t = 1 for different values
of diffusivity and for axisymmetric or 3D computation
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Fig. 7 Problem size and execution time ratios, between 3D and
axisymmetric computations, versus inverse of the mesh size

and the ratio of the execution times, i.e. the speedup,

Rtime =
Execution time in 3D

Execution time in axi
(28)

as the mesh size varies.

We present in Fig. 7 the ratios Rdof and Rtime as a

function of the inverse of the mesh size. We use κ = 0.5 and

Δt = 0.025. 1000 iterations are performed for every h. The

computations are performed in serial to avoid any scalability

effect. The execution time is the execution time of the time

loop part only.

We observe that Rdof scales as 1/h. This is expected

because the number of degrees of freedom per dimension

scales as 1/h and because by using an axisymmetric

formulation instead of a 3D formulation one uses a mesh with

a dimension of 2 instead of 3. We find that Rtime is much

larger than 1 and that it approximately scales as Rdof . This

means that the axisymmetric approach is much faster than

the 3D one and that the speedup scales as the factor of the

problem size reduction, i.e. as 1/h. This observation confirms

the interest of the axisymmetric code which is computationally

more efficient (and more and more efficient as h decreases).

VII. CONCLUSION

We have presented a methodology to derive the weak

formulation of the heat equation, with homogeneous

Dirichlet boundary conditions, with assumed axisymmetry.

The methodology relies on the use of an approximation space

of axisymmetric functions. The axisymmetry of the domain

and of the trial and test functions allows to simplify the

terms of the weak formulation and lead to a weak formulation

similar to that of a 2D problem. The key aspects of the

axisymmetric weak formulation are the r factor in every

term and the treatment of the axis boundary, which is not

a Dirichlet boundary. The algorithm, based on an implicit

Euler time scheme, is implemented in a C++ code. A test

on a manufactured solution shows the expected convergence

rates in terms of mesh size and time step. The numerical

example of a cylindrical solid with axisymmetric heating and

initial condition illustrates the interest of the axisymmetric

formulation compared to a 3D formulation. The results given

by both approaches are quasi identical but the code using the

axisymmetric formulation is much faster. As a matter of fact,

the axisymmetric code uses a 2D mesh instead of a 3D mesh,

so that the number of degrees of freedom is much lower. We

find that the speedup in serial computational time when using

the axisymmetric formulation scales as the inverse of the mesh

size. The axisymmetric formulation would nevetheless not be

able to capture a symmetry breach as the 3D formulation.
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