
  

Abstract—A multiple-criteria decision support system is 

proposed for the best aircraft selection decision. Various strategic, 

economic, environmental, and risk-related factors can directly or 

indirectly influence this choice, and they should be taken into 

account in the decision-making process. The paper suggests a 

multiple-criteria analysis to aid in the airline management's 

decision-making process when choosing an appropriate aircraft. In 

terms of the suggested approach, an integrated entropic preference 

optimization programming (POP) for fleet modeling risk analysis is 

applied. The findings of the study of multiple criteria analysis 

indicate that the A321(neo) aircraft type is the best alternative in this 

particular optimization instance. The proposed methodology can be 

applied to other complex engineering problems involving multiple 

criteria analysis. 

 

Keywords—Aircraft selection, decision making, multiple 

criteria decision making, preference optimization programming, 

POP, entropic weight method, TOPSIS, WSM, WPM.  

I. INTRODUCTION 

or fleet planning and modeling, the proper aircraft must 

be chosen and made available for airline strategic, tactical, 

and operational requirements. Therefore, choosing the 

kind of aircraft that would please clients depends on their 

needs and demands in fleet modeling.  

Choosing an aircraft is a difficult procedure, therefore 

careful consideration is needed in the fleet modeling process. 

This choice has to do with how many aircraft to buy or lease 

for fleet planning. When an airline plans its fleet, some fleet 

types with similar capabilities are viewed as competitors, 

even though there are currently a wide variety of alternatives 

from which to choose for fleet planning. 

Additionally, because fleet planning involves a sizable 

capital investment with a long-term vision, it is a mid - and 

long-term strategic choice that affects the financial condition 

of airlines. The fleet planning process for the airline is a 

crucial multiple-criteria decision-making (MCDM) analysis 

process that considers a number of essential evaluation 

criteria [1]. 

In this situation, the right MCDM techniques should be 

applied to help airline management efficiently evaluate the 

many aircraft alternatives based on pertinent criteria. The 

weight of the selection criteria to select the best alternative is 

determined using the entropic weight method (EWM). As a 

strong and adaptable decision-support tool, it enables 

decision-makers to model complicated problems while taking 

both quantitative and qualitative factors into consideration. 
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Numerous selection criteria can be successfully considered 

using the EWM methodology, and it also permits the 

objective consideration of criteria while allocating resources. 

The different options are also assessed using the preference 

optimization programming (POP) method.  

Decision-makers can choose solutions from a finite 

number of options using this MCDM approach to choose the 

best course of action. Combining these two techniques yields 

significant results when choosing the right aircraft type to 

meet the needs of the airline in the situation under 

consideration. Therefore, entropic preference optimization 

programming (POP), a relatively new MCDM technique, is 

applied to select the best possible aircraft alternatively based 

on different criteria [1]. 

In the chosen fleet planning scenario, the airline 

management recommends replacing the current aircrafts with 

new, modern, and sophisticated aircrafts that will improve 

capabilities and meet the most recent strategic, tactical, and 

operational needs with the least amount of maintenance and 

operating expense. In order to perform this study, a number 

of seasoned aviation industry participants with in-depth 

expertise in the subject evaluated the numerous aircraft types 

of options based on the predetermined criteria to prepare a 

shortlist of the potential alternatives. 

Determining the appropriate aircraft types based on the 

precise criteria established by experts, which should be 

chosen for the purpose of fleet optimization in a specific 

airline, using both the entropic weight method (EWM) and 

preference optimization programming (POP) is the MCDM 

research problem. The selection of aircraft for airlines is more 

prevalent challenge in the pertinent literature [1-26]. 

The principles of the aircraft selection problem are 

thoroughly reviewed in the literature on choosing different 

types of aircraft. The selection problems in these MCDM 

investigations use both traditional and fuzzy approaches. 

When there is incomplete knowledge of the multiple criteria 

decision problems, fuzzy methodologies are more practical 

and efficient to deal with uncertainty [28-54]. 

Since airlines have some unique characteristics that may 

affect the aircraft selection process, this research adds to the 

body of knowledge about the choice of aircraft by airlines. 

Additionally, the criteria for choosing an aircraft are related 

to the requirement to comprehend airline operations and 

structure. It is hoped that this research will be useful and aid 

in the decision-making process. Additionally, it will assist 

airline management who are involved in the selection of 

aircraft in reaching the best choice.  
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The rest of the paper is organized as follows: The entropic 

POP model is then presented in Section 2. The proposed 

approach is used to address the problem of multiple criteria 

decision-making in Section 3. The paper concludes by 

outlining its findings, its limits, and its suggestions for future 

study. 

II. METHODOLOGY 

A. Entropic Weight Method (EWM) 

The measured value of the jth factor in the ith sample is 

recorded as 
ijx in this approach, which uses J factors and I 

samples for the evaluation [52-53].  

 

Step 1. The normalization of measured values is the initial 

stage.The method used to calculate the jth factor's 

standardized value in the ith sample is designated as
ijp  

 

1

ij

ij I

iji

x
p

x
=

=


                                                                     (1) 

 

Step 2. The entropy value 
jE  of the jth factor is defined as 

 

1
ln

ln

I

ij iji

j

p p
E

I

== −
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                                                          (2) 

 

In the actual evaluation using the EWM, ln 0ij ijp p = ,  is 

generally set when 0ijp = for the convenience of calculation. 

The range of entropy value 
jE  is [0, 1]. The larger the 

jE

is, the greater the differentiation degree of factor J is, and 

more information can be derived. Hence, a higher weight 

should be given to the factor.  

 

Step 3. The calculation method of entropic weight 
j  is 

given by  
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B. POP Method 

The POP method is performed according to the following 

procedural steps [1]: 

 

Step 1. Constructing the decision matrix [ ]ij ixjX x=  

 

1

11 1

1
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Suppose that multiple criteria decision making analysis 

problem has I alternatives ( )1,...,i ia a a= , i ∈  

{ 1,...,i I= }, and J criteria ( )1,...,j jg g g= ,j ∈ { 1,...,j J= }, 

and the importance weight of each criterion (
j , j ∈  

{ 1,...,j J= }) is defined.  

 

Step 2. Normalizing the decision matrix [ ]ij ixjN n= . The 

decision matrix of the alternatives is normalized using the 

linear normalization scale. 

 

If 
jg  is the criterion, the bigger the better ( j B ) 

 

max

ij

ij

j

x
n

x
=                                                                                (5) 

 

If 
jg  is the criterion, the smaller the better ( j C ) 

 
min

j

ij

ij

x
n

x
=                                                                                 (6) 

 

where B represents a criterion as large as possible, C 

represents a criterion as small as possible.  
ijn is an element 

of the normalized matrix [ ]ij ixjN n= . 

 

Step 3. Calculating the weighted normalized value [ ]ij ixjZ z=  

 

ij j ijz n=                                                                                     (7) 

 

Step 4. Determining the preference optimization value (
i ) 

 

1

J

i ijj
z

=
=                                                                          (8) 

 

Step 5. Ranking the options in accordance with the principle 

that the choice with the highest value (
i ) is the best option. 

 

Step 6. Determining the elements of ideal solution (
*

jz ) 

 

   * * * *

1 2, ,..., (max | , (min |j J i j i j
ii

z z z z z j B z j C= =      (9)                                   

 

Step 7. Computing the distance of each alternative from  

(
*

jz ) and ( ijz ) 

 
*

1
( )

J

i j ijj
z z

=
= −                                                                   (10)                                               

 

where *( )i j ijd z z= −  is the distance measurement between 

two crisp numbers, and ( i ) is the preference optimization 

value. 
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Step 8. Ranking the options in accordance with the principle 

that the choice with the lowest value (
i ) is the best option. 

 

C.  Weighted Sum Model 

 

1

J

i j ijj
n 

=
=                                                                          (11) 

 

D. Weighted Product Model 
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1/
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j
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E. TOPSIS Method 

 

Steps 1-4 of  POP method are the same in TOPSIS 

 

Step 5. Determining ideal (
*A ) and anti-ideal ( A−

)solutions 

 

   * * * *

1 2, ,..., (max | , (min |J i j i j
ii
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Step 6. Calculating the separation measures 
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Step 7. Calculating relative closeness (
*

iC ) to the ideal 

solution 

 

*

*

i

i
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S
C

S S
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−
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+
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 where 
*0 1iC   value indicates the performance of the ith 

alternative, and higher values indicate higher performance. 

 

Step 8. Alternatives are ranked according to their relative 

closeness (
*

iC ) to the ideal solution. 

III. APPLICATION 

In this section, according to chosen fleet planning scenario, 

the airline management recommends replacing the current 

aircrafts with new, modern, and sophisticated aircrafts that 

will improve capabilities and meet the most recent strategic, 

tactical, and operational needs with the least amount of 

maintenance and operating expense.  The established experts 

committee thoroughly reviewed the literature to determine 

the alternatives and decision criteria for the selection of the 

passenger aircraft. Briefly, price (Million $) (
1g ), fuel 

consumption (kg/km) (
2g ), range (km) (

3g ), number of 

seats (
4g ), luggage volume (

3m ) (
5g ), and MTOW 

(maximum takeoff weight, (kg)) (
6g ) are the six factors for 

making a decision in the aircraft selection problem. Price 

(Million $) (
1g ), and fuel consumption (kg/km) (

2g ) are cost 

criteria, and other decision criteria are considered benefit 

criteria. Therefore, the proposed entropic POP approach is 

applied to the aircraft selection problem. The passenger 

aircraft alternatives are listed in the initial decision-making 

matrix as shown in Table 1. 

 
Table 1. Initial decision-making matrix 

 
Alternatives Decision criteria 

Aircrafts 1g  2g  
3g  

4g  
5g  

6g  

A319(neo) 101,5 2,82 6850 140 27 75500 

A320(neo) 110,6 2,79 6300 165 37 79000 

A321(neo) 129,5 3,3 7400 206 51 97000 

B737(MAX7) 96 2,85 7130 153 32,3 80000 

B737(MAX8) 117,1 3,04 6570 178 44 82600 

B737(MAX9) 124,1 3,3 6570 193 51,3 88300 

 

The objective criteria weights determined by the entropic 

weight method are given in Table 2. 

 
Table 2. Entropic weights of decision criteria 

 
 Decision criteria 

Entropy 
1g  

2g  
3g  

4g  
5g  

6g  

jE  0,997 0,999 0,999 0,995 0,985 0,998 

1 jE−  0,003 0,001 0,001 0,005 0,015 0,002 

j  0,115 0,053 0,031 0,180 0,547 0,074 

 

The priority vector of decision criteria is determined by the 

EWM as follows: 
3 2 6 1 4 5g g g g g g . The 

graphical representation of the priority vector of decision 

criteria is shown in Fig. 1.  

 

 
 
Fig. 1 Graphical representation of priority vector of evaluation 

criteria 

 

The normalization of the measured values of the initial 

decision matrix is given in Table 3.  
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Table 3. Normalized decision-making matrix 

 
 Decision criteria 

Alternatives 
1g  

2g  
3g  

4g  
5g  

6g  

1a  0,946 0,989 0,926 0,680 0,526 0,778 

2a  0,868 1,000 0,851 0,801 0,721 0,814 

3a  0,741 0,845 1,000 1,000 0,994 1,000 

4a  1,000 0,979 0,964 0,743 0,630 0,825 

5a  0,820 0,918 0,888 0,864 0,858 0,852 

6a  0,774 0,845 0,888 0,937 1,000 0,910 

 

The weighted normalized decision-making matrix is 

obtained by using Equation (7) and the weighted normalized 

decision-making matrix is shown in Table 4. 

 
Table 4. Weighted normalized decision-making matrix 

 
 Decision criteria 

Alternatives 
1g  2g  

3g  
4g  

5g  
6g  

1a  0,109 0,053 0,029 0,123 0,288 0,057 

2a  0,100 0,053 0,026 0,144 0,394 0,060 

3a  0,085 0,045 0,031 0,180 0,543 0,074 

4a  0,115 0,052 0,030 0,134 0,344 0,061 

5a  0,094 0,049 0,028 0,156 0,469 0,063 

6a  0,089 0,045 0,028 0,169 0,547 0,067 

 

The optimal values are determined by Equation (9) and the 

optimal values are shown in Table 5. 

 

Table 5. The vector of optimal values (
*

jz ) 

 
 Decision criteria 

Optimal 

values 1g  
2g  

3g  
4g  

5g  6g  

*

jz  0,115 0,053 0,031 0,180 0,547 0,074 

 

The distance of each alternative from  

(
*

jz ) and (
ijz ) is calculated and the computed distance values

*( )i j ijd z z= −  are given in Table 6.  

 

Table 6. Computed distance values (
id ) 

 
 Decision criteria 

Alternatives 
1g  

2g  
3g  

4g  
5g  

6g  

1a  0,006 0,001 0,002 0,058 0,259 0,016 

2a  0,015 0,000 0,005 0,036 0,152 0,014 

3a  0,030 0,008 0,000 0,000 0,003 0,000 

4a  0,000 0,001 0,001 0,046 0,202 0,013 

5a  0,021 0,004 0,003 0,025 0,078 0,011 

6a  0,026 0,008 0,003 0,011 0,000 0,007 

 

The ranking order of alternatives based on the results of 

Table 4 and Table 6 is given in Table 7.  

 

 

 

 

Table 7. POP ranking order of alternatives 

 
 Ranking orders of alternatives 

Alternatives 
i  Rank i  Rank 

1a  0,658 6 0,342 6 

2a  0,778 4 0,222 4 

3a  0,959 1 0,041 1 

4a  0,736 5 0,264 5 

5a  0,858 3 0,142 3 

6a  0,944 2 0,056 2 

 

The ranking orders of alternatives based on the results of 

the weighted sum and weighted product models are given in 

Table 8. 

 
Table 8.  WSM and WPM ranking orders of alternatives 

 
 WSM and WPM ranking orders of alternatives 

Alternatives WSM (
i ) Rank WPM (

i ) Rank 

1a  0,658 6 0,914 6 

2a  0,778 4 0,950 4 

3a  0,959 1 0,991 1 

4a  0,736 5 0,937 5 

5a  0,858 3 0,970 3 

6a  0,944 2 0,988 2 

 

TOPSIS ideal ( *A ) and anti-ideal ( A− ) solutions are 

shown in Table 9. 

 

Table 9. TOPSIS ideal (
*A ) and anti-ideal ( A−

) solutions 

 
 Decision criteria 

 
1g  

2g  
3g  

4g  
5g  

6g  

*A  0,115 0,053 0,031 0,180 0,547 0,074 

A−  0,085 0,045 0,026 0,123 0,288 0,057 

 

The relative proximity (
*

iC ) and the ranking order of the 

alternatives is given in Table 10. 

 

Table 10. The relative proximity ( *

iC ) and the ranking order 

of the alternatives 

 
 TOPSIS ranking order of alternatives 

Alternatives 
*

i
S  

i
S −

 *

iC  Rank 

1a  0,266 0,025 0,086 6 

2a  0,158 0,110 0,411 4 

3a  0,031 0,263 0,894 2 

4a  0,208 0,065 0,239 5 

5a  0,085 0,185 0,685 3 

6a  0,031 0,263 0,896 1 

 

Finally, to demonstrate the validation and effectiveness of 

the proposed method, a correlation analysis of the ranking 

orders of POP, WSM, WPM, and TOPSIS methods is 

performed, and the correlation analysis results are shown in 

Table 11. 
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Table 11. Correlation analysis of the ranking orders of  POP, 

WSM, WPM , and TOPSIS methods 
 

  POP WSM WPM TOPSIS 

POP 1    

WSM 1 1   

WPM 1 1 1  

TOPSIS 0,94 0,94 0,94 1 

 

The validation of results of the proposed POP method is 

tested with other classical MCDM methods: WSM, WPM, 

and TOPSIS. Multiple criteria analysis results indicate that 

POP, WSM, and WPM methods yield the same ranking 

orders of alternatives. However, TOPSIS method changes the 

ranking order of alternatives  (
3a )  and (

6a ) and favors the 

alternative (
6a ) as the optimal solution.  Also, POP, WSM, 

and WPM methods select the same alternative (
3a )  as the 

best solution for the aircraft selection problem. Even when 

identical data set and weights for the decision criteria are 

used, MCDM algorithms can produce different rankings of 

the alternatives. This is because each MCDM technique has a 

unique solution algorithm. 

IV. CONCLUSION 

The effectiveness of airlines' organizations depends on 

making logical decisions, like choosing an appropriate 

aircraft for strategic, tactical, and operational requirements in 

fleet planning. The management of the airline should consider 

the choosing of the optimal aircraft. 

The beginning points that concentrate on fleet modeling 

are the available alternatives and the choice of decision 

criteria. Experts have identified the criteria to evaluate the 

choices for aircraft types, which are primarily focused on 

operational, strategic, economic, and most recently 

environmental aspects. The proper evaluation of the aircraft 

choices required the use of strategic, economic, operational, 

and maintenance factors for multiple criteria analysis process. 

These concerns appear crucial for selecting aircraft since the 

relevant criteria should be directly tied to the particular 

instance. 

The aircrafts that are readily available are those that 

respond best to consumer needs in aviation industry. An 

essential factor determining an airline's ability to operate 

profitably and efficiently is the choice of the best type of 

aircraft for fleet planning and modeling. Additionally, it is 

important to utilize the right MCDM techniques to evaluate 

different aircraft options according to decision criteria. It is 

possible to apply an integrated entropic POP approach that 

produces insightful results in aircraft selection process. The 

proposed method allows for the pursuit of the best 

alternatives using criteria that are easily evaluated by a 

straightforward mathematical programming since it is 

composed of an effective and efficient methodology that is 

simple to comprehend and apply. 

An entropic POP-based solution technique for an aircraft 

selection problem was proposed in this multiple criteria 

analysis problem. This method was used to resolve a 

numerical example with six aircraft types and six decision 

criteria. The suggested method is highly useful since it spares 

the decision-maker from having to give weights to aircraft 

selection criteria.  

Successful integration of the entropic POP approach 

yielded reliable aircraft selection process outcomes. The 

results of the research lead to the conclusion that, in order to 

reduce risks, a single type of fleet structure is best for the 

particular airline. In conclusion, the current study focuses on 

a specific airline fleet modeling with unique characteristics, 

it significantly improves the fleet selection process.  

Finally, developing a method for choosing aircraft based 

on fuzzy preference optimization programming could be an 

interesting area for future research. 
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