
Deep Reinforcement Learning Approach for
Trading Automation in the Stock Market

Taylan Kabbani, Ekrem Duman

Abstract—Deep Reinforcement Learning (DRL) algorithms can
scale to previously intractable problems. The automation of profit
generation in the stock market is possible using DRL, by combining
the financial assets price ”prediction” step and the ”allocation” step
of the portfolio in one unified process to produce fully autonomous
systems capable of interacting with its environment to make optimal
decisions through trial and error. This work represents a DRL
model to generate profitable trades in the stock market, effectively
overcoming the limitations of supervised learning approaches. We
formulate the trading problem as a Partially observed Markov
Decision Process (POMDP) model, considering the constraints
imposed by the stock market, such as liquidity and transaction costs.
We then solved the formulated POMDP problem using the Twin
Delayed Deep Deterministic Policy Gradient (TD3) algorithm and
achieved a 2.68 Sharpe ratio on the test dataset. From the point of
view of stock market forecasting and the intelligent decision-making
mechanism, this paper demonstrates the superiority of DRL in
financial markets over other types of machine learning and proves
its credibility and advantages of strategic decision-making.

Keywords—Autonomous agent, deep reinforcement learning,
MDP, sentiment analysis, stock market, technical indicators, twin
delayed deep deterministic policy gradient.

I. INTRODUCTION

THE prime objective of any investor when investing in

any financial market is to minimize the risk involved

in the trading process and maximize the profits generated.

Investors can meet this objective by successfully predicting the

prices or trends of the market assets and optimally allocating

the capital among the selected assets. This process is very

challenging for a human to consider all relevant factors in

a complex and dynamic environment; therefore, the design

of adaptive automated trading systems capable of meeting

the investor’s objective and bringing more stagnant wealth

into the global market has been an intensive research topic.

Many efforts have been made to design such trading systems

in the past decade. The majority of these efforts focused

on using Supervised learning (SL) techniques [1], [2], [3],

[4], [9], which in essence train a predictive model (e.g.,

Neural Network, Random Forest,...) on historical data to

forecast the trend direction of the market. Regardless of their

popularity, these techniques suffered from various limitations,

leading to sub-optimal results [5]. Reinforcement Learning
(RL) offers to solve the drawbacks of Supervised Learning

approaches in trading financial markets by combining the

financial assets price ”prediction” step and the ”allocation”

step of the portfolio in one unified process to optimize

Dr. Ekrem Duman, Professor and Ms. Taylan Kabbani, MS.c, are with
the Graduate School of Natural and Applied Science, Özyeğin University,
Istanbul, Turkey (e-mail: taylan.kabbani@ ozu.edu.tr).

the objective of the investor, where the trading agent (the

algorithm) interacts with the environment (the model) to take

the optimal decision [6]. In addition, financial data are highly

time-dependent (function of time), making it a perfect fit for

Markov Decision Processes (MDP) [7], which is the core

process of solving RL problems. MDP captures the entire past

data and defines the whole history of the problem in just the

agent’s current state, and that’s highly crucial when it comes

to modeling financial market data [8].

Most works that studied the RL’s applications in financial

markets and particularly in trading stocks considered discrete

action spaces [9], [10], [11], [12], i.e., buy, hold, and

sell a fixed number of shares to trade a single asset. In

this work, a continuous action space approach is adopted

to give the trading agent the ability to gradually adjust

the portfolio’s positions with each time step (dynamically

re-allocate investments), resulting in better agent-environment

interaction and faster convergence of the learning process. In

addition, the approach supports the managing of a portfolio

with several assets instead of a single one. We first present a

formulation of the stock trading problem or what is referred

to as the trading Environment as a Partially Observed Markov

Decision Process (POMDP) model considering the constraints

imposed by the stock market, such as liquidity and transaction

costs. More specifically, we design an environment that

simulates the real-world trading process by augmenting the

state (observation) representation with ten different technical

indicators and sentiment analysis scores of news releases along

with other state components. We then solve the formulated

POMDP problem using the Twin Delayed Deep Deterministic

Policy Gradient (TD3) algorithm, which can learn policies

in high-dimensional and continuous action spaces like those

typically found in the stock market environment. Finally, we

evaluate our proposed approach by performing back-testing,

which is the process used by traders and analysts to assert the

viability of a trading strategy by testing it on historical data.

II. BACKGROUND AND RELATED WORK

A. MDP in Reinforcement Learning

In essence, Markov Decision Processes [13] (MDP) is used

to model stochastic processes containing random variables,

transitioning from one state to another depending on certain

assumptions and definite probabilistic rules. MDPs are a

perfect mathematical framework to describe the reinforcement

learning problem. In this framework, researchers call the

learner or decision maker the agent and the surrounding which

the agent interacts with (comprising everything outside the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

441International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

agent) the environment. The learning process ensues from

the agent-environment interaction in MDP, at each time step

t ∈ {1, 2, 3, ..., T} the agent receives some representation

(information) of its current state from the environment st ∈ S ,

and on that basis selects an action at ∈ A to perform. One

step later, due to its action, the agent finds itself in a new state,

and the environment returns a reward Rt+1 ∈ R to the agent

as a feedback of its action’s quality [14].

B. The Objective of Reinforcement Learning

We define the objective (goal) of RL as to maximize the

cumulative reward Gt it receives in the long run instead of

the immediate reward Rt

E[Gt] = E[Rt+1 +Rt+2 +Rt+3 + ...+RT] (1)

In the above reward equation (1), the term RT denotes

the reward received at the terminal state T means that the

aforementioned approach of calculating cumulative reward is

only valid when the problem at hand is an Episodic task, i.e.,

ends in a terminal state T. For the Continuous tasks i.e., no

terminal state, T = ∞, a discount factor gamma is introduced

to (1) (0 ≤ γ ≤ 1):

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...+ γk−1Rt+k +

=

∞∑
0

γkRt+k+1 (2)

C. Bellman Equations

Value functions are being used by almost all RL methods

to estimate how good (in terms of expected return) it is for

the agent to be in a given state or to perform an action in

a given state. This evaluation is being made based on the

future expected sum of rewards. Accordingly, value functions

are determined with respect to the future actions the agent

will take. We call a particular way of acting a Policy (π) [14]

which is a function that maps from environment’s states to

probabilities of selecting each possible action.

Bellman equations [15] are the fundamental property of

value functions used in dynamic programming as well as

in reinforcement learning to solve MDPs, and they are

essential to understand how many RL algorithms work.

Bellman equation states that the value function of state s

can be calculated by finding the sum over all possibilities

of expected returns, weighting each by its probability of

occurring following a policy π:

Vπ(s)
.
=

∑
a

π(a|s)
∑
s′

∑
r

P (s′, r|s, a)[r + γVπ(s
′)], ∀s ∈ S

(3)

In a similar way we define the action-value function as:

qπ(s, a) =
∑
s′

∑
r

P (s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)]
(4)

From Bellman equations, (3) and (4), we can derive what

is called The Bellman Optimality Equations. Intuitively, the

Bellman optimality equation expresses the fact that the value

of a state under an optimal policy must equal the expected

return for the best action from that state [14]:

V∗(s) = max
a

∑
s′

∑
r

P (s′, r|s, a)[r + γV∗(s′)] (5)

Similarly, we define optimal action-value function:

q∗(s, a) = max
π

qπ(s, a) =
∑

s′

∑

r

P (s′, r|s, a)[r + γmax
a′ q∗(s′, a′)]

(6)

D. Taxonomy of RL Algorithms

RL algorithms are classified based on how to represent and

train the agent into three main approaches:

1) Critic-Only Approach: This family algorithm learns

to estimate the value function (State-value function or

action-value function) by using Bellman optimality equations

as objective functions. We distinguish between two different

ways the agent learns the value function of the system.

The first way is Tabular Solution Methods where the value

functions are represented as arrays or tables and updated

with more accurate values after each iteration as the agent

collects more experience. This way of learning often finds

exact solutions. However, it does not generalize well, and the

state and action spaces must be small enough to be stored in

tables.

The second possible way in the critic-only approach is

called Approximate Solution Methods. They tend to generalize

better than Tabular methods but have lower discrimination,

and they are capable of learn the value function for

systems with enormous state and action spaces. Approximate

methods achieve this generalization by combining RL with

supervised learning algorithms. Deep Reinforcement Learning

is considered an approximate method that combines Neural

Networks with RL. Mnih et al. [16] are considered the father of

DRL, where they trained an agent of Deep Q-network (DQN)

to play Atari games, where pixels of the game screen were

the input data (state), and the directions of the joystick were

actions. They proved that DRL had outperformed all existing

algorithms in 2015 [17].

2) Actor-Only Approach: These methods take a different

approach, rather than using value function to evaluate every

action and find the optimal policy, they learn a policy which

directly maps states to actions.

E. Actor-Critic Approach

The actor-critic approach combines the actor-only with

the critic-only approach to overcome their faults. Many

researchers worked on improving the DQN algorithm. Van

Hasselt et al. [18] proposed to use two networks instead of

one Q-network to choose the action and the other to evaluate

the action taken to solve the deviation problem in DQN. They

called it Double-DQN. Lillicrap et al. [19] built on the top of

Double-DQN, an algorithm based on the deterministic policy

gradient (DDPG) that can operate over continuous action

spaces. The Twin Delayed Deep Deterministic Policy Gradient

(TD3) algorithm was proposed by Fujimoto et al. [20] to tackle

the problem of the approximation error in DDPG.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

442International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

F. RL in Finance

Bertoluzzo and Corazza [21] investigated the performance

of different RL algorithms in day-trading one selected

Italian stock. Specifically, they compared the performance

of Q-learning, and Kernal-based reinforcement learning,

concluding that Q-learning performance outperformed

Kernal-based RL. In a subsequent study [10], they explored

the effect of different reward functions such as Sharpe ratio,

average log return, and OVER ratio on the performance of

Q-learning. By trading six selected Italian stocks, they reported

that lagged return reward function has the best performance.

Instead of approximating a value function (critic-only), Deng

et al. [12] made one of the first attempts on combining Deep

Learning with Recurrent Reinforcement Learning to directly

approximate a policy function. This approach is called “deep

recurrent reinforcement learning” (DRRL). In their proposed

method, first, the DL part extracts 45 useful features from the

market to be used as state representative in the environment.

Secondly, they use a Recurrent Neural Network (RNN) as a

trading agent to interact with the deep-generated state features

and make decisions. To investigate the potential advantage

of Actor-Critic methods in solving the day trading problem,

Conegundes and Pereira [22] used Deep Deterministic Policy

Gradient (DDPG) algorithm to solve the asset allocation

problem. Considering different constraints such as liquidity,

latency, slippage, and transaction costs, they back-tested

their approach on the Brazilian Stock Exchange datasets.

They showed that their approach successfully obtained 311%

cumulative return in three years with an annual average

maximum drawdown around 19%.

III. PROBLEM DESCRIPTION

The stock trading problem is being modeled as Partially
Observed Markov Decision Process (POMDP), which can be

formulated by describing its State Space, Action Space, and

Reward Function. The POMDP model of the problem is called

the trading environment, and it is built to carefully mimic the

real-world trading process.

A. State Space

The state-space in the proposed environment is designed

to support multiple and single stock trading by representing

the state as (1+ 13 x N)-dimensional vector where N is the

number of assets we consider to trade in the market. Hence

the state space increases linearly with the number of assets

available to be traded.

There are two main parts of the state presentation. The first

part is the Position State ∈ R
1+N
+ which holds the current cash

balance and shares owned of each asset in the portfolio, and

the second part of the state is the Market Signals ∈ R
12×N ,

which holds the necessary market features for each asset as a

tuple, these features are the required information provided to

the agent to make predictions of the market movement. The

first type of information is based on the hypothesis of technical
analysis [23], which states that the future behavior of financial

markets is conditioned on its past; hence technical indicators

are being used in the state space to help the agent interpret

the market behavior. The second type of information is based

on fundamental analysis [24], which studies everything from

the overall economy and industry conditions to news releases.

Therefore a Natural Language Processing (NLP) approach

is used to measure the general sentiment from the news

releases and integrate it with the state representation. The state

(observation) vector at each time step is provided to the agent

as follows:

St = [[bt,ht], [{(Ci
t,SS

i
t,T

i
t)|i ∈ N}]]

Each component of the state space is defined as follows:

• N ∈ Z
N
+ : Number of assets in the portfolio.

• bt ∈ R+: The available cash balance in the portfolio at

time step t.

• ht = {hi
t|i ∈ N} = {h0

t , h
1
t , ..., h

N
t } ∈ Z

N
+ : The number

of shares owned for each asset i in N at time step t.

• Ci
t ∈ R

N
+ : The close price of asset i in N at time step t.

• SSi
t ∈ (−1, 0, 1): An integer 1, 0 or -1 to indicate the

sentiment of the news related to stock i at time step t.

• Ti
t: The 10 different Technical Indicators vector for asset

i in the portfolio at time step t using the past prices of

the asset in a specified look-back window W = 14 (most

common window is 14 or 9).

To demonstrate the state space, let’s assume that we have 3

different assets (N = 3) in the trading environment and an

initial capital of 1000$ to be invested, the state vector would

be a 40-dimensional vector and the initial state(s0) given by

the environment would be:

s0 = [[1000, 0, 0, 0][(p10, SS
1
0 , T

1
0), (p

2
0, SS

2
0 , T

2
0), (p

3
0, SS

3
0 , T

3
0)]]

B. Action Space

The designed agent in this study receives the state st
at each time step t as input and sends back action in the

range between 1 and -1 inclusive, at ∈ [−1, 1], the action

then is re-scaled using a constrain Kmax, which represents

the maximum allocation (buy/sell shares), transforming at
to an integer K ∈ [−Kmax,,−1, 0, 1,,Kmax], which

stands for the number of shares to be executed, resulting in

decreasing, increasing or holding of the current position of the

corresponding asset [25]. There are two important conditions

regarding the action execution in our approach:

• If the current capital (cash) in the portfolio is insufficient

to execute the buy action, the action will be partially

executed with what the current capital can buy of the

requested stock.

• If the number of shares for a specific asset (hi
t) in the

portfolio is less than the number of shares to be sold

(ait ∈ Z
−), the agent will sell all the remaining shares of

this asset in the portfolio.

We can mathematically express the action space as the

following:

At = {ait|i ∈ N} = {a0t , a1t , ..., aNt } (7)

S.t.

ait ∈ Z
N

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

443International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

−Kmax ≤ ait ≤ Kmax, ∀i ∈ N
ait = hi

t if |ait| > hi
t , ∀at ∈ Z

−

where N : assets in the portfolio; At: the action vector sent by

the agent to the environment; ait: the action (number of shares)

to buy/sell for asset i at time step t; Kmax: the maximum

number of shares the agent can re-allocate of an individual

asset at each time step t; hi
t: the portfolio position (number of

shares) of asset i at time step t.

The action space depends on the number of assets available

in the portfolio N and it is given as (2×Kmax+1)N ; hence

the action space increases exponentially by increasing N .

C. Reward Function

The difference between the portfolio value Vt at the end

of period t and the value at the end of previous period t − 1
represents the immediate reward r(s, a, s′) received by the

agent after each action, and we denote the final investment

return at a target time Tf as G.

r(s, a, s′) = Vt − Vt−1 (8)

where the portfolio value V at each time step is calculated as:

Vt = bt + ht.Ct (9)

where bt: the available cash balance in the portfolio at time

step t; ht = {hi
t|i ∈ N}: the position vector (number of

shares of each asset) at time step step t; Ct = {Ci
t |i ∈ N}:

the closing price of each asset in the portfolio at time step t.

The transition cost can be represented in many different

ways in real life, and it varies from one broker to

another. To better simulate the real-world trading process

in the stock market, transaction costs (i.e., commission

fees) are incorporated into the immediate reward (r(s, a, s′))
calculation. In this study, we set the commission as a

fixed percentage of the total closed deal amount, where

dbuy represents the commission percentage when buying is

performed, and dsell is the commission percentage for selling:

dt = {dit|i ∈ N} = [d0t , d
1
t , ..., d

N
t]

where : dit =

⎧⎪⎨
⎪⎩

dbuy, if ait > 0

0, if ait = 0

dsell, if ait < 0

The commission vector dt is incorporated into the

immediate reward function by excluding the commission

amount paid from the portfolio value calculated in (9), so

the agent would avoid excessive trading that results in a high

commission rate and therefore avoids a negative reward:

Vt = bt + ht.Ct − ht.(Ct−1 ◦ dt) (10)

In the above equation, the amount paid for the commission is

calculated by taking the Hadamard product of the commission

vector dt and the closing price of the previous period Ct−1,

that’s because the action of buying/selling occurred on the

previous state and therefore commission should be calculated

using the closing prices on that state.

D. Environment Constraints and Assumptions

We impose the following constraints and assumptions on

the MDP environment for two main reasons. First, to idealize

and simplify the complex financial market systems (e.g., via

liquidity assumption) without losing the nature of the problem.

The second reason is to make the model closer to a real-world

situation.

1) Non-Negative Balance Constraint: The cash balance in

any state is not allowed to be negative, bt > 0. Therefore,

the actions should not result in a negative cash balance, to

achieve that, the environment prioritize the execution of sell

actions (at < 0) in the action vector At (7) to guarantee cash

liquidity in the portfolio so buy actions (at > 0) would be

fulfilled afterward. If the buy action still results in a negative

balance (i.e., not enough cash to fulfill the action), it is fulfilled

partially with what remains in the portfolio’s cash balance.

2) Short-Selling Constraint: Short selling is prohibited in

the designed environment, all portfolio’s positions must be

strictly non-negative:

ht = {hi
t|i ∈ N} = {h0

t , h
1
t , ..., h

N
t } ∈ Z

N
+

3) Zero Slippage Assumption: When the market volatility

is high; slippage occurs between the price at which the trade

was ordered and the price at which it is completed [26]. In this

study, the market liquidity is assumed high enough to meet the

transaction at the same price when it was ordered [27]. This

assumption is mostly valid in a real-world trading environment

when trading in big stock markets.

4) Zero Market Impact: In financial markets, a market

participant impacts the market when it buys or sells an asset

which causes the price change. The impact provoked by the

agent in this study is assumed to have no effect on the market

when it performs its actions. This assumption is mostly true

even in real-life trading when the market volume is big enough

to make the individual investment insignificant [27].

IV. THE TRADING AGENT

Actor-Critic-based algorithms successfully solved the

continuous action space utilizing function approximation

and policy gradient methods. One of the most famous

actor-critic, off-policy algorithms is the Deep Deterministic

Policy Gradient algorithm (DDPG) [28]. Still, despite the

excellent performance DDPG achieved in continuous control

problems, it has a significant drawback similar to many

RL algorithms, which is the overestimation of action values

(maxa Q(st+1, at+1)) as a result of function approximation

error. This overestimation bias is unavoidable in RL as we

use estimates instead of ground truth in the learning process.

In this study, as our problem has a continuous space of

actions, we use Twin Delayed Deep Deterministic Policy

Gradient (TD3) [20] algorithm, which is a direct successor

of DDPG but with improvements to tackle the overestimation

problem mentioned earlier. TD3 can reduce the overestimation

bias, thus reducing the accumulation of errors in the learning

process by introducing three main components to DDPG,

Clipped Double Critic Networks, Delayed Updates, and Target

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

444International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

Algorithm 1: Twin Delayed Deep Deterministic Policy

Gradient (TD3) [20]

1. Initialization
Critic networks Q(s, a|w1), Q(s, a|w2) and actor

π(s|θ), randomly, with weights W1,W2 and θ.

Target networks Q′
1, Q′

2 and π′ with weights

W ′
1 ←− W1,W

′
2 ←− W2, θ

′ ←− θ
Replay buffer D
2. foreach t=1 to T do

Initialize a random process N for action

exploration

Select action with exploration noise

a ∼ π(s|θ) + ε, ε ∼ N (0, σ)
Observe reward r and next state s′

Store transition tuple (s, a, r, s′) in D
Sample mini-batch of N transitions (s, a, r, s′)
from D

ã ← π(s′|θ) + ε, ε ∼ clip(N (0, σ̃),−c, c)
y ← r + γmini=1,2 Q(s′, ã|wi)
Update critics

Wi ← argminWi
N−1

∑
(y −QWi

(s, a))2

if t mode d then
Update θ by the deterministic policy gradient:

∇θJ(θ) =
N−1

∑∇aQW1
(s, a)|a=πθ(s)∇θπθ(s)

Update target networks:

W ′
i ← τWi + (1− τ)W ′

i

θ′ ← τθ + (1− τ)θ′

Policy Smoothing Regularization. Algorithm 1 shows the TD3

steps.

The agent in this paper performs daily trading operations

and to aid the agent to understand its environment (the stock

market), we augmented the state representation of ten different

technical indicators and news sentiment scores, as explained

in Section III-A.

A. Technical Indicator

We used the ten most famous indicators used by technical

traders when trading in the stock market [23] with a look-back

window W = 14 we describe them briefly as follows:

1) Relative Strength Index (RSI) ∈ R
N
+ : A momentum

indicator to measure the magnitude of recent price

changes and identify overbought or oversold conditions

in the stock price.

2) Simple Moving Average (SMA) ∈ R
N
+ : An important

indicator to identify current price trends and the potential

for a change in an established trend.

3) Exponential Moving Average (EMA) ∈ R
N
+ : Like SMA,

a technical indicator used to spot current trends over

time. However, EMA is considered an improved version

of SMA by giving more weight to the recent prices

considering old price history less relevant; therefore it

responds more quickly to price changes than SMA.

4) Stochastic Oscillator (%K) ∈ R
N
+ : A momentum

indicator comparing the closing price of the stock to

a range of its prices in a look-back window period W .

5) Moving Average Convergence/Divergence (MACD) ∈
R

N : One of the most used momentum indicators to

identify the relationship between two moving averages

of the stock price. It helps the agent to understand

whether the bullish or bearish movement in the price

is strengthening or weakening [29].

6) Accumulation/Distribution Oscillator (A/D) ∈ R
N :

A volume-based cumulative momentum indicator that

helps the agent to assess whether the stock is being

accumulated (bought) or distributed (sold) by measuring

the divergences between the volume flow and the stock

price.

7) On-Balance Volume Indicator (OBV) ∈ R
N : Another

volume-based momentum indicator that uses volume

flow to predict the changes in stock price [30]:

Price Rate Of Change (RO) ∈ R
N : A momentum-based

indicator that measures the speed of stock price changes

over the look-back window W .

8) William’s %R ∈ R
N
+ : Known also as Williams Percent

Range, a momentum indicator used to spot entry and exit

points in the market by comparing the closing price of

the stock to the high-low range of prices in the look-back

window (W).

9) Disparity Index ∈ R
N
+ : A percentage that indicates the

relative position of the current closing price of the stock

to a selected moving average. In this study, the selected

moving average is the EMA of the look-back window

(W).

B. Sentiment Scores

The supply and demand fluctuations in the stock market

are highly sensitive to the moment’s news due to the impact

of mass media on the investor’s behavior. Hence many

traders and investors consider the news reports in their

stock-picking strategy. In our proposed approach, we believe

that incorporating the general news sentence towards the asset

being considered in the observation (state) definition will help

the agent learn a better trading strategy. In [31], they showed

that news headlines are more useful in forecasting than using

the entire news article content. Therefore, we only consider

news headlines as our input to calculate the sentiment score.

We describe the process of calculating a sentiment score for

each asset in the portfolio at time step t (day) as the following:

• We use a rule-based matching approach to search for

the asset name, stock symbol, or other keywords in the

headline news (ex. Microsoft or MSFT, tech,..) released

on day t.

• Then we use a fine-tuned BERT model called FinBERT

[32] to calculate the sentiment probability (Positive,

Negative, or Neutral) of each news headline. FinBERT

model is a pre-trained NLP model to analyze sentiments

specifically for financial text.

• Finally, we take the average of the asset’s news sentiment

probabilities for each day and assign 1 if the positive

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

445International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

probability is higher than the negative probability and -1

otherwise. We ignore the neutral probability as we believe

that if an asset has been mentioned on the news, it will

impact the asset price (positively or negatively). If the

asset has no news on a given day, we assign 0 to the

sentiment score.

V. EXPERIMENTS AND RESULTS

We evaluate our approach by performing back-testing which

is the process used by traders and analysts to asset the viability

of a trading strategy by testing it on historical data. We conduct

two different back-testing experiments, the purpose of the first

experiment (Section V-B) is to validate the superiority of the

continuous action space to solve the trading problem over the

discrete action space and to demonstrate how each component

of the state representation in our approach contributes to the

learning process of the agent. The second experiment (Section

V-D) is conducted to validate the robustness of our model on

large space of actions and states by considering different assets

in the portfolio and to evaluate the performance on an unseen

market data to check the agent’s ability of generalization.

We use two metrics to evaluate our results: the first metric is

the cumulative sum of reward, i.e., the total profits at the end

of the trading episode. The second metric is the annualized

Sharpe ratio [38] that combines the return and the risk to give

the average of the risk-free return by the portfolio’s deviation.

In general, a Sharpe ratio above 1.0 is considered to be “good”
by investors because this suggests that the portfolio is offering

excess returns relative to its volatility. A Sharpe ratio higher

than 2.0 is rated as “very good” where a ratio above 3.0 is

considered “excellent”.

A. Data Description and Preprocessing

In this work, we use Yahoo Finance [33] to retrieve

historical market daily prices. The retrieved historical data

consists of 7 columns; Date, Volume, Open, Close, Adjusted
Close, High and Low prices. To prepare each dataset to be

used by the model, we first perform timestamps processing

by using the trading calendar (exchange-calendars package

[34]) to check if the market was open between the given

dates to the agent and exclude weekends and holidays from

the dataset so the agent will not face gaps in the trading

process. Further dataset processing is required to ensure that

all financial assets (stocks) considered in the portfolio have

an equal length of historical data points. Some stocks have

been recorded for decades, while other newly listed stocks are

only a few months. This time-dimension alignment of stocks’

historical data will prevent the bias action of the agent towards

the stock with more data. Once we have the timestamps

processed we use Close, High, Low prices and Volume at

each timestamp to calculate the technical indicators of each

asset with a look-back window (W) equals to 14 days.

To obtain a comprehensive and accurate financial news,

we combined headline news from Benzinga, Seeking Alpha,
Zacks and other financial news websites [35], and crawled

historical news headlines from Reddit worldNews Channel
[36]. The final dataset consists of 3,288,724 news headlines

ranging between 2009-2021, which we utilized to calculate the

sentiment score.

B. First Experiment

In the first experiment, we conduct three evaluations, each

with the same configurations like the number of assets in

the portfolio, initial capital, commission rates, etc. but with

different components of the environment’s state representation.

We start with a baseline with only the close price as a market

signal feature. We add technical indicators in the second

evaluation, and finally, we evaluate by adding sentiment

analysis scores. In Table. I we summarize the three evaluations

results of the experiment.

Due to the stochasticity in the learning process, the

experiment results may change at each run depending on

different factors such as the actions the agent randomly starts

with and uses to explore or the random weight initialization.

As suggested in [37] to ensure fairness and reliability of

our results, we average multiple runs over different random

seeds to have an insight into the population distribution of the

algorithm performance on an environment. In this experiment’s

evaluations, we report and highlight results across several

independent runs. While the recommended number of trials

to evaluate an RL algorithm is still an open question in the

field, we reported the mean and standard error across five trials

(runs), which is the suggested number in many studies [37].

1) Evaluation on Baseline Environment: To evaluate the

continuous action approach in our model, we test it by solving

the problem with only the close price of the assets as a

market signal; hence the state representation in this baseline

environment consists of only the position state and the close

price of the asset at t (Ct) as a market signal, i.e., the agent

will solely make its trading decision based on merely the

closing price of the stock as a market feature. We perform

five experiment trials each with 200 epochs (episodes) for the

same hyperparameter configuration, only varying the random

seed across trials.

In [39], the approach proposed is similar to ours. However,

the paper follows a discrete action space where the agent can

choose to buy, sell or hold action (i.e., discrete action space)

of a fixed number of shares on each time step for a portfolio

of two assets, namely; Qualcomm (QCOM) and Microsoft

(MSFT). We back-test our approach on the same 5-years daily

historical stock data (data between 2011-2016) used in their

study with the same amount of initial capital ($10,000) and

compared the annual Sharpe ratio. They reported a Sharpe

ratio equal to 0.85 using only the closing price in the state

representation.

Fig. 1 shows the average return (sum of rewards) at each

trading episode and the standard error across the 5 runs. As

can be observed, the agent’s performance increases with more

experience it gains with the number of epochs to successfully

achieve 33960$ average return (profits) with standard error

equals to ±4473$. From the commission spent by the agent,

we can conclude that the agent was successfully able to find

a balanced trading strategy by balancing between trading and

holding positions. Finally, the average annual Sharpe ratio of

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

446International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

Fig. 1 TD3 agent performance metrics on Baseline environment using the same hyperparameter configurations averaged over five different random seeds: (a)
Average return (Profits in dollars) at the end of each episode; (b) The average annual Sharpe ratio at the end of each episode; (c) The average amount of

commission spent at the end of each episode

our approach on the baseline environment was 1.43 with a

standard error of ±0.13. This is significantly higher than the

reported Sharpe ratio 0.85 in [39] benchmark which indicates

the advantage of continuous action space over the discrete

space.

2) Evaluation on WithTechIndicators Environment: Using

the same configurations used in baseline environment

evaluation, we augment the state with technical indicators

and run five independent experiments to report the average

return, Sharpe ratio, and commission. We refer to this

environment with technical indicators and close price in the

state representation as WithTechIndicators environment. The

results in Fig. 2 demonstrate that augmenting the environment

with technical indicators has brought more helpful information

to the agent to make better decisions. The agent successfully

achieved 89782$ average return (profits) with ±18980$

standard error, and an average Sharpe ratio equals 2.75 with

a standard error ±0.43. We can also notice that the average

amount of commission is almost two times the amount spent

in the baseline environment, which means that the agent was

significantly more active in buying/selling stocks and closed

more successful deals. In addition, our approach outperformed

the benchmark [39] reported Sharpe ratio of 1.4.

3) Evaluation on WithSentiments Environment: We refer

to this environment with sentiment analysis scores, technical

indicators, and close price in the state representation as

WithSentiments environment. We include the sentiment scores

of news headlines for each asset in the state representation and

repeat the experiment with the same configurations. The total

average return profits increased to 115591$ with standard error

equals to ±17721 across the five runs. Sharpe ratio increased

to 3.14 and ±0.40 standard error. The average amount of

commission equals the amount spent in the environment with

only technical indicators (WithTechIndicators environment),

which means that the agent performed almost the same

number of trades but with a better decision (policy). In the

benchmark [39] study, they also reported an increase in the

agent performance when adding sentiment scores to the state

with a Sharpe ratio equal to 2.4. The plot showing the results in

Fig. 3 demonstrates that augmenting the state with sentiment

analysis along with technical indicators has improved the agent

performance.

C. Experiment’s Summary

We notice in all plots of the three evaluations that the

policy improves over time, as the agent accumulates more

reward, and thus the Sharp ratio increases. Towards the end the

slope is almost flat indicating the policy has stabilized to local

optimum. As the stock trading problem has never been solved

we do not have a specified reward or Sharpe ratio threshold

at which it is considered solved.

D. Second Experiment

In the second experiment, we evaluate our approach on

a wider action and state spaces by considering 10 assets to

trade, AAPL, MSFT, QCOM, IBM, RTX, PG, GS, NKE,

DIS and AXP. Our back-testing use historical daily data from

01/01/2010 to 01/01/2018 with initial capital of 100000$ for

performance evaluation (Fig. 4). We split the dataset into two

periods, the first period is to train the agent, the second is used

to test the performance of the agent on unseen data.

We notice that for our model to generalize better, we had

to impose regularization by normalizing the observation space

using Batch Normalization. This technique uses mini-batches

from samples to have unit mean and variance. It maintains a

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

447International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

Fig. 2 TD3 agent performance metrics on WithTechIndicators Environment using the same hyperparameter configurations averaged over 5 different random
seeds: (a) Average return (Profits in dollars) at the end of each episode; (b) The average annual Sharpe ratio at the end of each episode; (c) The average

amount of commission spent at the end of each episode

Fig. 3 TD3 agent performance metrics on WithSentiments Environment using the same hyperparameter configurations averaged over 5 different random
seeds: (a) Average return (Profits in dollars) at the end of each episode; (b) The average annual Sharpe ratio at the end of each episode; (c) The average

amount of commission spent at the end of each episode

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

448International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

TABLE I
THE PERFORMANCE EVALUATION COMPARISON BETWEEN THREE DIFFERENT EVALUATIONS AND BENCHMARK

Evaluation Environment Baseline WithTechIndicators WithSentiments
Accumulated Return 33960$ ±4473 89782$ ±18980 115591$ ±17721

Sharpe Ratio 1.43 ±0.13 2.75 ±0.43 3.14 ±0.4
Commission 355$ ±83 1109$ ±248 1447$ ±268

Sharpe Ration benchmark 0.85 1.4 2.4

Fig. 4 Train, and test data splits

running moving average of the mean and variance to normalize

the observation vector during testing. We further normalized

the rewards received by the agent as it makes the gradient

steeper for better rewards. We also set the look-back window to

20 (W = 20). We added action noise to encourage exploration

during training to force the agent to try different actions and

explore its environment more effectively, leading to higher

rewards and more elegant behaviors.

Our approach successfully archived a 2.68 Sharpe ratio

which considered “very good” and 110308$ as total profits

(Rewards) on the test data. We let the agent keep learning on

the test set since this will help the agent better adapt to the

market dynamics.

VI. CONCLUSION AND FUTURE WORKS

This work presented a Deep Reinforcement Learning

approach that combines technical indicators with sentiment

analysis to find an optimal trading policy for assets in the

stock market. Results show that the addition of technical

indicators and sentiment scores of the news headlines to

the state representation has significantly improved the agent’s

performance and the superiority of using a continuous action

space over a discrete one to solve the trading problem. We

also explored the potential of using an Actor-Critic algorithm

(TD3) to solve the portfolio allocation problem. Our approach

achieved an annual Sharpe ratio of 2.68 on test data, which

is considered ”Good” by investors. The approach can be

improved in future work by having more computational power

to run more experiences and better evaluate the approach.

Our environment, agent, and learning process possess many

hyperparameters that must be tuned. It will be interesting to

see the model’s performance with better-tuned parameters,

which requires high computation power. In addition, we

believe that training an NLP algorithm to process the financial

news content instead of only the headline may positively affect

the agent performance.

REFERENCES

[1] J. Patel, S. Shah, P. Thakkar, and K. Kotecha, “Predicting stock and
stock price index movement using trend deterministic data preparation and
machine learning techniques,” Expert Systems with Applications, vol. 42,
no. 1, pp. 259–268, 2015.

[2] A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj,
and A. Iosifidis, “Forecasting stock prices from the limit order book
using convolutional neural networks,” in 2017 IEEE 19th Conference on
Business Informatics (CBI), vol. 01, pp. 7–12, 2017.

[3] A. Ntakaris, J. Kanniainen, M. Gabbouj, and A. Iosifidis, “Mid-price
prediction based on machine learning methods with technical and
quantitative indicators,” PLOS ONE, vol. 15, pp. 1–39, 06 2020.

[4] Y. Hao and Q. Gao, “Predicting the trend of stock market index using
the hybrid neural network based on multiple time scale feature learning,”
Applied Sciences, vol. 10, no. 11, 2020.

[5] M. M. L. de Prado, “The 10 reasons most machine learning funds fail,”
WGSRN: Data Collection & Empirical Methods (Topic), 2018.

[6] T. L. Meng and M. Khushi, “Reinforcement learning in financial markets,”
Data, vol. 4, no. 3, 2019.

[7] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2010.

[8] S. Chakraborty, “Capturing financial markets to apply deep reinforcement
learning,” 2019.

[9] M. R. Vargas, C. E. M. dos Anjos, G. L. G. Bichara, and A. G. Evsukoff,
“Deep leaming for stock market prediction using technical indicators and
financial news articles,” in 2018 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, 2018.

[10] M. Corazza and F. Bertoluzzo, “Q-learning-based financial trading
systems with applications,” Working Papers 2014:15, Department of
Economics, University of Venice ”Ca’ Foscari”, 2014.

[11] Z. Tan, C. Quek, and P. Y. Cheng, “Stock trading with cycles: A financial
application of anfis and reinforcement learning,” Expert Systems with
Applications, vol. 38, no. 5, pp. 4741–4755, 2011.

[12] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct
reinforcement learning for financial signal representation and trading,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 28,
no. 3, pp. 653–664, 2017.

[13] O. Alagoz, H. Hsu, A. J. Schaefer, and M. S. Roberts, “Markov decision
processes: A tool for sequential decision making under uncertainty,”
Medical Decision Making, vol. 30, no. 4, p. 474–483, 2009.

[14] R. S. Sutton, F. Bach, and A. G. Barto, Reinforcement Learning: An
Introduction. MIT Press Ltd, 2018.

[15] R. E. Bellman, Dynamic programming. Princeton University Press,
2010.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep
reinforcement learning,” Nature, vol. 518, pp. 529–33, 02 2015.

[18] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” CoRR, vol. abs/1509.06461, 2015.

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 2019.

[20] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” CoRR, vol. abs/1802.09477,
2018.

[21] F. Bertoluzzo and M. Corazza, “Testing different reinforcement learning
configurations for financial trading: Introduction and applications,”
Procedia Economics and Finance, vol. 3, pp. 68–77, 2012. International
Conference Emerging Markets Queries in Finance and Business, Petru
Maior University of Tı̂rgu-Mures, ROMANIA, October 24th - 27th, 2012.

[22] L. Conegundes and A. C. M. Pereira, “Beating the stock market with a
deep reinforcement learning day trading system,” in 2020 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2020.

[23] C. Kirkpatrick and J. R. Dahlquist, “Technical analysis: The complete
resource for financial market technicians,” 2006.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

449International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

[24] J. R. Nofsinger, “The impact of public information on investors,” Journal
of Banking & Finance, vol. 25, no. 7, pp. 1339–1366, 2001.

[25] Z. Xiong, X.-Y. Liu, S. Zhong, H. Yang, and A. Walid, “Practical deep
reinforcement learning approach for stock trading,” 2018.

[26] “Investopedia – slippage definition.” https://www.investopedia.com/
terms/s/slippage.asp. [Online; accessed 02-October-2021].

[27] Z. Jiang, D. Xu, and J. Liang, “A deep reinforcement learning framework
for the financial portfolio management problem,” 2017.

[28] A. Akhmetzyanov, R. Yagfarov, S. Gafurov, M. Ostanin, and
A. Klimchik, “Continuous control in deep reinforcement learning with
direct policy derivation from q network,” in Human Interaction, Emerging
Technologies and Future Applications II, (Cham), pp. 168–174, Springer
International Publishing, 2020.

[29] T. T.-L. Chong, W.-K. Ng, and V. K.-S. Liew, “Revisiting the
performance of macd and rsi oscillators,” Journal of Risk and Financial
Management, vol. 7, no. 1, pp. 1–12, 2014.

[30] J. Granville, Granville’s New Key to Stock Market Profits. Papamoa
Press, 2018.

[31] X. Ding, Y. Zhang, T. Liu, and J. Duan, “Using structured events to
predict stock price movement: An empirical investigation,” in Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), (Doha, Qatar), pp. 1415–1425, Association for
Computational Linguistics, Oct. 2014.

[32] D. Araci, “Finbert: Financial sentiment analysis with pre-trained
language models,” 2019.

[33] “Yahoo finance.” https://finance.yahoo.com/.
[34] G. Manoim, “exchange-calendars.” https://pypi.org/project/

exchange-calendars/.
[35] “Kaggle – daily financial news for 6000+ stocks.” https://www.kaggle.

com/miguelaenlle/massive-stock-news-analysis-db-for-nlpbacktests.
[Online; accessed 15-November-2021].

[36] “Kaggle – sun, j. (2016, august). daily news for stock market
prediction.” https://www.kaggle.com/aaron7sun/stocknews. [Online;
accessed 15-November-2021].

[37] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” 2019.

[38] W. F. Sharpe, “The sharpe ratio,” The Journal of Portfolio Management,
vol. 21, no. 1, pp. 49–58, 1994.

[39] S. Kau, “Algorithmic trading using reinforcement learning augmented
with hidden markov model. working paper, stanford university.,” 2017.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:16, No:10, 2022

450International Scholarly and Scientific Research & Innovation 16(10) 2022 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

6,
 N

o:
10

, 2
02

2
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
71

7/
pd

f

