Microstructure and Texture Evolution of Cryo Rolled and Annealed Ductile TaNbHfZrTi Refractory High Entropy Alloy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Microstructure and Texture Evolution of Cryo Rolled and Annealed Ductile TaNbHfZrTi Refractory High Entropy Alloy

Authors: M. Veeresham

Abstract:

The microstructure and texture evolution of cryo rolled and annealed ductile TaHfNbZrTi refractory high entropy alloy was investigated. To obtain that, the alloy is severely cryo rolled and subsequently annealed for the recrystallization process. The cryo rolled – 90% shows the presence of very fine grains and microstructural heterogeneity. The cryo rolled samples are annealed at a temperature ranging from 800°C to 1400°C, the partial recrystallization is observed at 800°C annealed condition, and at higher annealing temperatures the complete recrystallization process is noticed. The development of ND fiber texture is observed after the annealing.

Keywords: refractory high entropy alloy, cryo-rolling, annealing, microstructure, texture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421

References:


[1] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., ... & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299- 303.
[2] Yeh, J. W., Alloy Design Strategies and Future Trends in High-Entropy Alloys. Jom, 2013.65(12): p. 1759- 1771.
[3] Otto, F., Yang, Y., Bei, H., & George, E. P. (2013). Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 61(7), 2628-2638.
[4] Veeresham M. Development of Impressive Tensile Properties of Hybrid Rolled Ta0. 5Nb0. 5Hf0. 5ZrTi1. 5 Refractory High Entropy Alloy. International Journal of Mechanical and Materials Engineering. 2021 May 3;15(6):267-71.
[5] Senkov, O. N., Wilks, G. B., Scott, J. M., & Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19(5), 698-706.
[6] Sheikh, S., Shafeie, S., Hu, Q., Ahlström, J., Persson, C., Veselý, J., ... & Guo, S. (2016). Alloy design for intrinsically ductile refractory high-entropy alloys. Journal of Applied Physics, 120(16), 164902.
[7] Wu, Y. D., Cai, Y. H., Wang, T., Si, J. J., Zhu, J., Wang, Y. D., & Hui, X. D. (2014). A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Materials Letters, 130, 277-280.
[8] Hansen, N. and D.J. Jensen, Development of microstructure in FCC metals during cold work. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1999. 357(1756): p. 1447-1469.
[9] Humphreys, F. J. and M. Hatherly, in Recrystallization and Related Annealing Phenomena (Second Edition). 2004, Elsevier: Oxford.
[10] Pa, M., D. P., D., Chandra, T., & C. R., K. (1996). Grain growth predictions in micro alloyed steels. ISIJ international, 36(2), 194-200.
[11] Verlinden, B., Driver, J., Samajdar, I., & Doherty, R. D. (2007). Thermo-mechanical processing of metallic materials (Vol. 11). Elsevier.