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1 
Abstract—The purpose of this study is to explore the 

characteristics of developing a machine learning application using 
synthetic data. The study is structured to develop the application for 
the purpose of deploying the computer vision model. The findings 
discuss the realities of attempting to develop a computer vision model 
for practical purpose, and detail the processes, tools and techniques 
that were used to meet accuracy requirements. The research reveals 
that synthetic data represent another variable that can be adjusted to 
improve the performance of a computer vision model. Further, a suite 
of tools and tuning recommendations are provided.  

 
Keywords—Computer vision, machine learning, synthetic data, 

YOLOv4. 

I. INTRODUCTION 
HE purpose of this study is to explore the question of 
whether machine learning can be successfully undertaken 

using only a machine learning computer and media that is 
readily available. This research attempts to understand the 
challenges associated with high failure rates [11] for companies 
seeking to implement machine learning. Some research 
suggests that many solutions found in the current literature are 
developed in simulated environments, making the results “not 
close enough to what is expected in real-life applications” [15]. 
Further, the study sought to understand whether synthetic 
imagery has the potential to substitute for authentic images and 
mitigate pervasive human labeling errors noted in research 
literature [5]. The project goal is to employ available resources 
to train YOLO4 to detect sharks, as a means to improve human-
shark interactions in recreational settings.  

The completed pipeline included a detailed production 
specification for 3D artwork, tools for managing the datasets, 
and potential strategies to optimize the performance of the 
model were investigated [19]. The synthetic images used in this 
study are sourced from publicly available 3D models, which are 
processed to crate dataset of 2D labeled images, accompanied 
by box locations and labels for the target objects. The 
completed Blender/Python API was used to augment image 
qualities such as respective camera positions, visual, and 
lighting effects. After the computer vision model was trained, a 
series of tests were conducted to evaluate the performance of 
the model, strategies were explored to investigate whether the 
systems’ accuracy could be refined. 

A. Data for Computer Vision 
The volume of machine learning research has increased over 
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the past five years, which has led to an increased availability of 
software, theories, and many resources for advancing machine 
learning systems are readily available [1]. Large public datasets 
such as such as Imagenet (image-net.org) or COCO 
(cocodataset.org/), have been used widely in computer vision 
research, but these resources do not include marine imagery that 
is specific to the project goals.  

The Nature Conservancy and a collection of international 
partners have assembled a marine dataset for machine learning 
applications to enhance the management of fisheries. While a 
majority of the marine footage is captured from an aerial 
platform, the purpose of the database and the purpose of the 
project do not match. This mismatch is a problem of topical 
diversity within the dataset, where many examples represent 
one subset of activities (shark fishing) but offer few examples 
of other subsets of activities (sharks in recreational settings).  

There are many instances where data sources do not include 
a sufficient number of images, with a clearly defined subject, in 
a variety of poses. Other factors that have limited the 
availability of quality imagery are privacy, the amount of time 
to collect data, and the cost of producing a labeled dataset [22]. 
Similar shortages are reported in a range of computer vision 
research, including work with thermal-infrared visual tracking 
[2] and pose estimation [3]. In more complex applications, the 
sheer volume of imagery needed makes machine learning 
nearly impossible. For example, computer vision researchers 
have noted that training a self-driving car to an acceptable level 
of performance might require the data generated by 100 cars 
driving 365 days per year, 24 hours, every day for 12 years to 
capture enough data [4].  

B. Synthetic Data 
Synthetic imagery is generated by either encoding sample 

images using computation methods or by using animated, 3D 
models to generate 2D images of the subject to be identified. 
Examples of computation encoding methods are Generative 
Adversarial Networks (GANs) and Autoencoders. Such 
methods encode and process a collection of images and decode 
the data with features changes, a system that is capable of 
generating unique photo-realistic images based on the original 
samples. A GAN consists of two collaborative networks: a 
generator that composes an image, and a discriminator that 
evaluates the quality of the synthetic images [6]. These two 
networks cyclically create-and-review images, which enhances 
the performance of the generator until it consistently configures 
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photorealistic synthetic images [7]. Auto encoders use a single 
neural network to encode or compress data into a latent space 
that describes the image. New features are introduced by 
altering weights and bias in decoding [21]. 

Blender is an open-source, three-dimensional modeling 
software with a Python application programming interface 3D 
animation is often used in a synthetic image pipeline [24]. A 
pipeline that employs this strategy starts with a human artist 
who creates a static model or a short, animated scene [8]. The 
artistic representations are manipulated using a Python script 
that controls rendering by using Blender’s Python (bpy) 
interface. The processing script adjusts lighting, adds effects 
and positions the camera dynamically in order to quickly 
produce images that include a variety of scenes. The techniques 
are similar to what has been accomplished by other researchers 
using Blender [23] but do not appear to be reproduced 
otherwise with the Unreal game engine tools that can generate 
virtual worlds based entirely on synthetic imagery [9]. 

The pipeline developed for generating synthetic imagery has 
a number of related benefits. For example, the processing script 
can include functions that automatically capture the bounding 
box of the 3D model and apply an annotation. Error-free boxing 
and labeling by itself presents an enormous advancement in 
machine learning. Synthetic imagery solves other problems that 
plague computer vision training as well, including the ability to 
circumvent privacy regulations, and reduce dependency on 
large commercial datasets. Research has also demonstrated that 
using synthetic images to support training improves accuracy 
by as much as 10% [1], [10]. 

 

 
Fig. 1 Example of a synthetic image 

 
Data management is a labor-intensive task associated with 

supervised machine learning. Because hundreds of thousands 
of images may be needed for training, data collection and 
management alone may take weeks or months. Once the data 
collection has been completed, images are segregated into sub-
datasets. Then each unlabeled image must be examined and 
‘captured’ with a bounding box and annotated with a label. This 
step in the process is time-consuming and is prone to human 
error. For example, in a recent study conducted at MIT, 
researchers discovered that about 6% of images contained in 
visual datasets are mislabeled or boxed improperly [5].  

Data preparation activities lead to the accumulation of high 
project costs and high failure rates that have been noted to be as 
high as 51% for large enterprises and 74% for small enterprises 
[11]. Synthetic data production reduces cost, mitigates risk, 
dramatically reduces data management, and eliminates error in 
each of the data management tasks because data preparation 
tasks can be automated. Synthetic data offer a manner by which 
to circumvent issues associated with preparing data for training, 
thereby reducing time, effort, and risk. 

C. Unmanned Aerial Search and Rescue 
The advantages of using unmanned aerial vehicles (UAVs) 

as a platform for computer vision have been recognized as 
having great potential in marine search and rescue (SAR). 
Oftentimes marine searches encompass areas as large as 16,000 
square miles [13]. It is understandable that human fatigue plays 
an important mitigating factor in such situations, making it 
difficult to find people or crafts lost in the ocean. The use of 
manned aircraft is costly and oftentimes are not readily 
available. Remote unmanned aircraft also offer safety 
advantages in such operations, by reducing the number of 
people in the field. Most important, UAVs have the potential to 
deploy in emergencies in a shorter period of time [12].  

Experiments have demonstrated effective use of aerial 
cameras to identify and track objects in real time [13], during 
daylight and night operations using thermal cameras [14]. In 
recent times there has been an increase in demonstration 
projects that use artificial intelligence. It has been noted that 
many recent experiments are designed in simulated 
environments, and as such are somewhat limited in accounting 
for aircraft dynamics, or environmental conditions that are 
likely to affect performance in real-time applications [15].  

D. Purpose of Study 
This study evaluates a synthetic dataset production pipeline 

and reports subsequent performance testing using YOLOv4. 
The intention is to encompass an end-to-end process of 
manipulating 3D artwork, managing the training and validation 
dataset, and evaluating the performance of YOLOv4 when 
training is enhanced with synthetic data. A number of related 
research studies have demonstrated an increase in accuracy 
when training is enhanced with synthetic imagery [1]. The 
present research, then, focuses on the implications of 
establishing a synthetic data production pipeline to train a 
computer vision model.  

The synthetic images are imported, manipulated and saved 
using a Python algorithm developed for the study. Two species 
of sharks (Great White and Hammer Head) were chosen as 
subjects for training. The project focuses on producing images 
to train YOLO to detect sharks from an aerial platform. While 
deployment of the algorithm is not within the scope of the study, 
such a system is intended to provide rescue workers the ability 
to avoid or manage close encounters between sharks and 
people. 

II. PROCEDURES 
While the research is focused on synthetic data, authentic 
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images are still needed to train a computer vision model. The 
combination of authentic and synthetic imagery provides 
indistinguishable samples for the computer to learn from and 
strengthens predictions. Videos that featured sharks, captured 
from drones and helicopters, were collected from public 
sources. Individual frames were exported from the video at 6 
frame intervals. Using this technique, 550 authentic images of 
Hammerhead sharks and 650 images of Great White Sharks 
were organized. From this pool images were set aside for testing 
and validation. The training and testing images were then 
individually labeled.  

The synthetic dataset was created by rendering animated 3D 
models. Sharks breathe by moving through the water to keep 
oxygen circulating through their gills. To capture this 
movement with a synthetic model, an armature is added to the 
3D object. An armature is composed of bones and acts as a 
skeleton for a model. The bones are paired with the skin of the 
object, called the mesh, to synchronize their movements and 
produce a moving model. Each time the model is set in a new 
position, a keyframe is set. A keyframe is a time marker that 
saves a place in an animation cycle where the user would like 
to save the objects’ position. The animation that results from 
stringing the keyframes together makes the shark model appear 
to swim as the body and torso swing side to side. Lines of code 
were added to randomly select one of these keyframes for each 
render to add variation in training data.  

A production specification was designed to provide a 
Blender artist with instructions to adjust the quality of the 
imagery. The processing script controlled the playback head, 
camera coordinates, object location, object texture, object 
position and lighting. The production specification detailed 
qualities necessary for error-free processing when the 3D model 
is processed. For example, the 3D object should be centered, 
and needs to have a base color with an added texture overlay 
that is bright enough to distinguish the texture from the 
background. The animation did not have to loop seamlessly as 
long as it captured the full range of motion. These specifications 
are optimized for training.  

௖ܰ௢௨௡௧ ݐ݁ܵ   = = ܽ ݐ݁ܵ  .0  = ݀ ݀݊ܽ ܰ/2^ݎߨ4   √(ܽ. = ߴ_ܯ ݐ݁ܵ ( = ߴ_݀ ݐ݁ܵ .[݀/ߨ]݀݊ݑ݋ݎ  = ߮݀ ݀݊ܽ ߴ_ܯ/ߨ  .ߴ)_݀/ܽ  :ℎ ݉ ݅݊ 0ܿܽ݁ ݎ݋ܨ ( ߴ_ܯ) − = ߴ ݐ݁ܵ    }݋݀ (1 ݉)ߨ  + = ߮ܯ ݐ݁ܵ    ߴ_ܯ/(0.5 :ℎ ݊ ݅݊ 0ܿܽ݁ ݎ݋ܨ    [(߮݀/ߴ)݊݅ݏߨ2]݀݊ݑ݋ݎ  ߮ܯ) − = ߮ ݐ݁ܵ            }݋݀ (1 = ݔ             ߮_ܯ/݊ߨ2  = ݕ              ߮ݏ݋ܿߴ݊݅ݏݎ = ݖ             ߮݊݅ݏߴ݊݅ݏݎ =+ݐ݊ݑ݋ܿ_ܰ                            ߴݏ݋ܿݎ  1 
Fig. 2 Algorithm for generating equidistributed points on the surface 

of a sphere with regular placement. 
 

The processing script included several requirements, but 
none was more important than the camera positions. Camera 

perspectives are crucial for creating realistic, varied data for 
training an object detection algorithm. With the 3D model 
positioned at Blender’s origin (0,0,0), the algorithm for 
generating equidistributed points on the surface of a sphere with 
regular placement was created to position the camera, to ensure 
adequate coverage of the object [17]. 

The camera orientation was adjusted to mimic video frames 
captured from an aerial platform. Camera positions ranged 
from 0 to 2*π, with φ set to generate downward viewing 
images. Further, implementing a regular method to place the 
camera at different angles around the shark allowed each angle 
to be utilized equally. This strengthened the synthetic dataset 
by introducing more images that include a diverse set of poses. 
The complete rendering process was neatly packed in the 
leopardi library [20]. 

Once the 3D model has been rendered into a 2D image, a 
truth background is selected randomly from a separate directory 
holding several such images, and merged with the image. 

Each training session in YOLO requires the training images 
with their corresponding annotation files, a class text file, a data 
file, a training file, a testing file, a configuration file, and a 
convolutional weight file. The class text file lists the target 
domains in order, so the predictions are labeled with the correct 
name. For this experiment, the class file only contains the shark 
label class. The training and validation text files each contain a 
list of image pathways to be fed through the neural network 
(NN). The configuration file sets up the NN parameters, such 
as the batches, subdivisions, image resizing, learning rate, and 
learning rate decay. The data file contains the pathway to the 
class, training, and test files as well as the backup directory 
where training weights are stored after every 100 iterations. 
This file is called along with the convolutional weight file to 
run darknet’s training command.  

Two YOLOv4 models were trained with the same 
configuration; however, one model was trained on 10000 
images and the other was trained on 3000 images. This was 
done to evaluate whether the quality of characteristics 
contained within the imagery can improve training. In both 
cases, the synthetic and authentic data were mixed together, in 
a ratio of 10:1, for training to optimize the model's 
results, which is consistent with research findings [1].  

Training iterations were set to match the number of images 
in the training dataset [16]. After training, the final weights are 
stored in a backup directory. These weights are used to test the 
model on video frames unknown to the model.  

The validation set proved crucial to the mean average 
precision (mAP) calculation set to occur at every epoch. The 
last 10% of the training data proved not to be varied enough to 
use as a benchmark, so a script was written using the Numpy 
library’s random sampling function. 1,000 authentic images 
were randomly sampled from the training pool and used as a 
new validation set. This change increased testing accuracy by 
approximately five percent.  

Training and tests were performed on a 16 core Intel i7, with 
256 GB of RAM, and an NVIDIA 2080 GPU with 8GB of 
RAM.  
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III. RESULTS 
The model’s best weights, the ones resulting in the highest 

mAP, were used for testing on shark videos. Two models were 
trained with the same configuration; however, one model was 
trained on 10000 images and the other was trained on 3000 
images. The learning rate was .001, the learning rate decay was 
.0005, the batch size was 24, and the image input size was 
608x608 pixels.  

The mosaic feature and batch normalization were defaulted 
on the YOLOv4 configuration file as well. The adversarial 
learning rate feature was added with a value of 0.05. A 
validation set of 1000 randomly sampled authentic images were 
used to calculate the mAP value at each epoch. In this study, the 
model trained on 3000 images performed better; it had a higher 
mAP value and reduced the number of false positive detections. 

Figures 2 and 3 illustrate the training loss (blue line) and 
validation mAP (red line), where fig. 3 resulted from training 
the model on 10000 images. The loss steadily decreased; 
however, the mAP oscillated throughout training. Although the 
mAP was 97% at the end of training, the model made numerous 
false positive detections during the testing phase. The loss value 
was not a reliable way to measure the accuracy of the model, 
rather how well the bounding boxes fit the object, whether it 
was the right object or not. 

Fig. 4 shows the model’s loss and mAP after training the 
model on 3000 images. The loss value decreased more 
gradually when compared to Fig. 3, and the training finished 
with a higher loss value. The mAP values are much more stable 
throughout training and much higher on average, finishing 
training with a mAP value of 99%. There were fewer labeling 
errors during the testing phase with this model. 

 

 
Fig. 3 Training loss and validation mAP after trained on 10000 

images 
 

 
Fig. 4 YOLOv4 training loss and validation mAP after trained on 

3000 images 

IV. DISCUSSION 
Synthetic data play an important role in machine learning. 

During the course of this study, finding the “right kind” of 
authentic images was problematic. The synthetic imagery 
served to enrich the authentic data with a wide variety of poses, 
scale and truth backgrounds. Having the ability to produce 
images suitable for machine learning also offers researchers to 
manipulate the qualities of the data being presented to the 
model, and by doing so, improve the performance of the model.  

At the outset, our strategy was to generate thousands of 
images to introduce to YOLO. However, we discovered that in 
reality, when training a computer vision model, more is not 
better. This changed the amount of time required to generate 
images and training substantially. Because fewer images are 
needed for training, training time decreased from 20 hours to 6, 
a substantial improvement. We have observed that presenting 
images that features, textures and other characteristics are 
enlarged appears to enhance the accuracy of the model.  

To evaluate whether further performance enhancements 
might be achieved, YOLO’s batch size, the learning rate, and 
the learning rate decay were evaluated. YOLOv4’s Bag of 
Freebies was also utilized to evaluate the adversarial learning 
rate, label smoothing, mosaic, and DropBlock features. The 
results of these tests did not coincide with current research [18]. 
Current research literature suggests that there is also no 
definitive way to choose or optimize the model’s 
hyperparameters, as the tools have been noted as being context-
sensitive, suggesting the necessity to be aware of how these 
hyperparameters may affect performance. This study focused 
on how the model’s inputs affect training [19].  

In the beginning of this study, it was assumed more images 
would result in a more accurate model due to previous studies 
suggesting more data would fix overfitting. However, the 
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model appeared to overfit to the 10000-image dataset by the end 
of training. To remedy this, a smaller dataset composed of 3000 
images was used to train the model. This resulted in a higher, 
more stable mAP and a model that made significantly less 
mistakes during testing. Therefore, the quality of the images is 
more important than the size of the dataset. By using synthetic 
data, a dataset composed of “good” data can be assembled in 
mere hours. The model also required less training time since 
there were less images to look through. Training time decreased 
by 30%. 

V. CONCLUSION 
This study focused on creating an end-to-end production 

pipeline that uses synthetic data in order to speed production 
without sacrificing the performance of the model. The inclusion 
of synthetic data was key to filling in the dataset collected for 
the current research, thereby providing a greater variety of 
poses.  

The 3D renders required several production cycles and tests 
before the media was working well with the algorithm. Once 
the algorithm was configured and optimized using a single 3D 
model, a production specification outlined how to produce the 
textures, lighting, and animation features for the remaining 3D 
models. This strategy allowed the researchers to evaluate how 
well the synthetic media performed based on their specific 
qualities. For example, it appears that synthetic images perform 
best when scaled up to fill a larger percentage of the image 
canvas. It appears that the magnification of edges and features 
has an impact on training, making it possible to reach 
acceptable performance standards with fewer images, and 
subsequently less time.   

A set of production tools was developed that was necessary 
to structure and manage the training, testing, and validation 
datasets. It is often necessary to track different collections of 
images that comprise a training dataset. For example, naming 
conventions can be used to identify different images 
characteristics such as how images were sourced, quality 
markers, or domains. A tool is authored to rename batches of 
files and their accompanying annotation files. A function to 
translate YOLO annotations to VOC format was also developed 
as some datasets are managed by one labeling system or the 
other. Finally, another tool critical to managing datasets is a 
script that will segregate percentages of images into subsets for 
training and validation. 

Finally, the researchers investigated tuning hyperparameters 
in order to enhance the model’s performance. It should be noted 
that the most consistent finding in the research literature is that 
consistent, reliable methods to tune hyperparameters tend to be 
case-specific. Evaluating hyperparameter adjustments requires 
time-consuming training cycles and stepwise evaluation. While 
such adjustments are considered key to optimizing an 
algorithms performance, most are considered too advanced to 
be practical [24]. These specifications provide data with clearly 
defined features and edges with specific use cases in mind. For 
this study, the camera angle was a crucial variable because there 
were a limited number of shark images taken from an aerial 
perspective. Using synthetic data also provides more 

opportunity for variety in a shorter amount of time than 
collecting real data. Synthetic imagery fills in the gaps where 
authentic imagery is insufficient in a variety of poses. Capturing 
images of animals is much more difficult than inanimate objects 
because there is more variety in body positions, and they are 
able to interact with their environment. 

This study focused on optimizing input data to minimize 
overfitting and build confidence. The input data determine how 
“good” a model will be when tested in the field. A model must 
be able to generalize well, so it does not underperform beyond 
lab testing. Synthetic data are the solution to the lack of 
available, clean data for machine learning. 

VI. LIMITATIONS 
This study is limited by many factors. There are a limited 

amount of aerial shark images and videos. Many of the 
authentic images that are available are too small, where many 
examples of visible sharks underneath the surface of the water 
were 16x16 pixels or smaller in size. The researchers used 
public video to source training samples, therefore, many of the 
authentic images extracted from video feeds had similar 
qualities (i.e., background, textures, color). This has the benefit 
of extracting the full range of motion of the sharks but has the 
disadvantage of the training and validation sets containing 
video frames that look very similar.  
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