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Abstract—The utilization of electronic medical record (EMR) data 

to establish the disease diagnosis model has become an important 
research content of biomedical informatics. Deep learning can 
automatically extract features from the massive data, which brings 
about breakthroughs in the study of EMR data. The challenge is that 
deep learning lacks semantic knowledge, which leads to 
impracticability in medical science. This research proposes a method 
of incorporating lexical-semantic knowledge from abundant entities 
into a convolutional neural network (CNN) framework for pediatric 
disease diagnosis. Firstly, medical terms are vectorized into Lexical 
Semantic Vectors (LSV), which are concatenated with the embedded 
word vectors of word2vec to enrich the feature representation. 
Secondly, the semantic distribution of medical terms serves as 
Semantic Decision Guide (SDG) for the optimization of deep learning 
models. The study evaluates the performance of LSV-SDG-CNN 
model on four kinds of Chinese EMR datasets. Additionally, CNN, 
LSV-CNN, and SDG-CNN are designed as baseline models for 
comparison. The experimental results show that LSV-SDG-CNN 
model outperforms baseline models on four kinds of Chinese EMR 
datasets. The best configuration of the model yielded an F1 score of 
86.20%. The results clearly demonstrate that CNN has been effectively 
guided and optimized by lexical-semantic knowledge, and LSV-SDG-
CNN model improves the disease classification accuracy with a clear 
margin. 
 

Keywords—Lexical semantics, feature representation, semantic 
decision, convolutional neural network, electronic medical record. 

I. INTRODUCTION 
ITH the development of medical informatization, the 
EMR system is widely applied in hospitals. Increasingly, 

intelligent diagnosis based on EMR data is becoming a hotspot 
in the field of medical informatics [1], [2]. Traditionally, 
doctors diagnose through the patient’s chief complaint, present 
medical history, past medical history, relevant examination, and 
other information, which also constitute EMR. Apparently, 
EMR data are characterized by semi-structured, unstructured, 
heterogeneous, and fuzzy semantics. How to use EMR data to 
establish a disease diagnosis model is an important research 
content of biomedical informatics [3], [4]. 

Considerable intelligent diagnostic models based on EMR 
data have been proposed [5]-[10]. As early as the 1970s, EMR 
data were used to construct small expert knowledge bases 
manually to support clinical diagnosis, but due to the 
inefficiency of manual work, the study of disease diagnosis 
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stagnated [11], [12]. In 2015, IBM Watson was able to diagnose 
diseases based on knowledge graph and infer appropriate 
treatments for patients. However, this knowledge graph fails to 
deal with the wide scope and complexity of medical knowledge. 
Recently, research on EMR data has made a breakthrough using 
deep learning methods. Research on University of California, 
San Francisco (UCSF) and Uchicago Medical systems by 
Google shows that deep learning is an effective intelligent 
diagnosis model in that it can automatically extract features 
from massive EMR data without traditional feature engineering 
[13]. However, the feature representation learned from the deep 
learning merely derives from the statistics of a large amount of 
data and diagnosis lacks professional knowledge guidance. 
Thus, it is far from reaching the practical level in accuracy [14]. 

In recent years, several research teams have tried to 
incorporate professional knowledge into deep learning. Fang et 
al. [15] presented a knowledge-enhanced ensemble method 
named Latent Semantic Imputation (LSI) to interpret relations 
in knowledge graphs as linear translation from one word to 
another for enhancing word embedding. Xu et al. [16] 
developed a methodology using symbolic knowledge in deep 
learning. Specially, they constructed a logical-constraint 
semantic loss, which captures the symbolic knowledge and adds 
previously-lost information to neural networks. It made the 
neural network achieve good performance on semi-supervised 
multi-class classification. Choi et al. [17] proposed a graph-
based attention model that supplements electronic health 
records with hierarchical information inherent to medical 
ontologies and performed the model in several prediction tasks. 
However, the idea of integrating semantic knowledge at the 
lexical level has not been noticed. Practically, lexical semantics 
can fully express domain knowledge in highly specialized 
domains such as medicine. In the scenario of medicine, doctors 
utilize medical terms to precisely describe the health of patients 
so that EMR contains abundant entity types such as symptoms 
and disease. Apparently, medical terms are important semantic 
resources in medical data mining tasks. It is straightforward to 
think of making full use of these medical terms to learn a 
disease diagnosis model with good performance. 

In this paper, we present a method to integrate lexical-
semantic knowledge from abundant entities into a CNN 
framework for disease classification. The integration of lexical-
semantic knowledge in this paper includes two aspects. Firstly, 
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medical terms are vectorized to generate LSV. Secondly, the 
semantic distribution of medical terms serves as SDG to adjust 
the pattern recognition. Or rather, LSV is concatenated with the 
embedded word vectors generated by word2vec to enrich the 

feature representation, and SDG is used for the optimization of 
the deep learning model. Fig. 1 shows the differences between 
our model and the traditional deep learning model. 

 

 
Fig. 1 Differences between our model and the traditional deep learning model. The strategy of LSV and SDG with lexical-semantic knowledge 

were utilized in the traditional deep learning model to improve model performance 
 

 
Fig. 2 Algorithm flow of the LSV-SDG-CNN model. In the feature representation layer, the strategy of LSV is utilized to concatenate with the 

embedded word vectors to enrich the feature representation. In the decision layer, semantic decision based on the strategy of SDG is used to 
correct the deep learning model 

 
II. METHODS 

A. The Proposed Model LSV-SDG-CNN 
Fig. 2 shows an overview of the proposed model LSV-SDG-

CNN. Compared with the traditional deep learning models, the 
LSV-SDG-CNN model focuses on using lexical semantics to 
enrich feature representation and guide deep learning models’ 

optimization. 
As shown in Fig. 2, in the input layer, both EMR data and the 

lexical-semantic dictionary are fed to our LSV-SDG-CNN 
model. In the feature representation layer, each word in EMR 
data is transformed into an embedded word vector and a LSV 
by the lexical-semantic dictionary, respectively. These two 
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kinds of vectors are combined as a mixed vector  to propagate 
into the learning layer of the deep learning model which is 
specified as CNN in our model. Then, LSV-CNN decision ρ  
can be obtained in the decision layer. At the same time, a 
semantic decision ρ  is calculated by the Bayesian probability ρ ,  of each semantic term in input EMR data according to the 
lexical-semantic dictionary. Thus, the semantic decision ρ  is 
incorporated with LSV-CNN decision ρ  to synthesis the 
output  of our LSV-SDG-CNN model, which is denoted as: 

 =                                        (1) 

B. The Construction of Lexical-Semantic Dictionary in 
Pediatrics 

Lexical-semantic dictionary, an innovative component of the 
LSV-SDG-CNN model, can be used for the construction of 
LSV, semantic decision, and word segmentation. The main 
principle of constructing a lexical-semantic dictionary is that 
the dictionary should contain two aspects of semantic terms: 
words with lexical meaning in domain knowledge and with 
grammatical meaning [18]. 

In this paper, we construct a Chinese lexical-semantic 
dictionary in Pediatrics based on the characteristics of pediatric 
EMR. A typical EMR includes a set of descriptions, such as the 
patient’s basic information, chief complaint, present history, 
previous history, family history, and examinations, and then is 
accompanied by an initial diagnosis. Through the exploration 
of EMR data, we found that there are some descriptions of 
symptoms, human organs, examinations, and acronyms 
commonly used in medicine, which have medical lexical 
meaning. Besides, there are some numerals, measures, 
conjunctions, negative words, and degree modifiers, which 
have grammatical meanings. 

According to the characteristic of pediatric EMR data, we 
extract semantic terms from the following groups: (1) clinical 
symptom D ; (2) eight systems of the human body D ; (3) physical examination D ; (4) image 
examination D ; (5) laboratory examination D ; 
(6) acronyms D ; (7) degree modifiers D ; (8) 
negative adverbs D ; (9) conjunctions D ; (10) 
numeral D ; and (11) measure D . Specifically, 
semantic terms from the first six groups have lexical meaning 
in domain knowledge, while semantic terms from the last five 
groups have grammatical meaning. And the detailed 
information is presented in Table I. 

After designing the classes of the lexical-semantic 
dictionary, we extract pediatric medical terminology with 
lexical meaning from textbook in China: Pediatrics (seventh 
edition) [19]. Besides, since those terms with grammatical 
meaning mentioned above are extremely important to the 
semantic expression of EMR data, we extract these terms from 
the modern Chinese grammar library. As a result, a lexical 
semantic dictionary is built with a size of 4194. 

TABLE I 
DESCRIPTION OF SEMANTIC TERM 

No. Name of groups Meaning Example 

1 clinical 
symptom 

abnormal changes in the body after 
illness cough 

2 eight systems of 
the human body eight systems of the human body digestive 

system 

3 physical 
examination 

detection and measurement of 
human morphological structure and 

functional development level 

the body's 
temperature 

4 image 
examination 

examination in radiology department 
or imaging department 

computed 
tomography 

5 laboratory 
examination 

physical or chemical examination in 
the laboratory to determine the 
characteristics of the substance 

being examined 

blood routine 
examination 

6 acronyms words that are solidified into a freely 
usable linguistic unit red blood cell 

7 degree modifiers degree modifiers for diseases, 
symptoms, etc. 

cough in the 
morning 

8 negative words adverbs for negating later words not 

9 conjunctions words used to connect words, 
phrases or sentences and 

10 numeral words used to denote quantity one 

11 measure words used to denote units of 
quantity degree 

C. Feature Representation Based on Word2vec and LSV 
The EMR data need to be converted into data that the 

computer can recognize, that is, each word needs to be 
converted into a corresponding vector. At present, there are two 
mainstream methods for word vector representation, namely 
one-hot and word2vec. One-hot represents each word as an n-
dimensional vector, where n is the vocabulary size. The 
attribute value corresponding to the word is 1, and the other 
attribute values are 0. However, it will often cause the curse of 
dimensionality. Word2vec focuses on finding the mapping 
relationship between words and vectors by deep learning 
methods so that the words with similar meanings are clustered 
in the vector space [20]. Word2vec is powerful, but it does not 
utilize readily available knowledge or guidance by subject 
matter experts. 

In this paper, the strategy of LSV is proposed to convert 
semantic knowledge into semantic vectors to enrich feature 
representation. The concrete scheme is introduced in Fig. 3. 
Each word in each EMR is expressed as a mixed vector. First 
of all, an embedded word vector is generated by word2vec, 
which is notated = , ,⋯ ,  where is the 
dimension of vector embedding. Additionally, a semantic 
vector derived from the lexical-semantic groups is constructed, 
which is notated as: 

 =, , , , ,, , , , ,   
 

each element of which comes from the constructed lexical-
semantic dictionary. The semantic vector represents each word 
as an 11-dimensional vector. When a word belongs to a group, 
the corresponding attribute value of the group is 1, and the 
attribute value of other groups is 0. Thus, the embedded word 
vector  and the semantic vector  are combined to form a 
new vector denoted as: 
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= :                                        (2) 
 

 
Fig. 3 Feature representation based on word2vec and LSV. Each 

word in each EMR is expressed as a mixed vector which consists of 
an embedded word vector generated by word2vec and a semantic 

vector derived from the lexical-semantic groups 
 

Since words belonging to different groups have different 
importance for different tasks, the pre-trained vector  is 
finetuned for each task. Overall,  is constructed as a feature 
representation based on statistical learning and lexical features 
simultaneously. 

D. Optimization of CNN Model Based on SDG 
In this paper, a strategy of SDG is proposed for the 

optimization of deep learning models with semantic decisions. 
The core process of SDG can be described as follows: (1) The 
Bayesian probability ρ , 	of each term in the lexical-semantic 
dictionary is calculated using (3); (2) The posterior probability ρ  that the training sample belongs to the -th class is 
computed by (4), which is designated as semantic decision ρ  
for the input data; (3) ρ  serves as SDG and is incorporated 
with the CNN decision ρ  to construct the loss function, 
which is used to iteratively optimize the model. The Bayesian 
probability ρ ,  that the -th semantic term in a training sample 
belongs to the	 -th class is defined as: 

 		ρ , = , , ∗ cw                         (3) 

 
where S ,  denotes the number of occurrences of the i-th 
semantic term in class	  samples,  is the number of disease 
categories, and cw  means category weights of class  
samples. According to ρ , , the posterior probability ρ  that the 
training sample belongs to the	 -th class is defined as: 

 

ρ , = ,
,                                  (4) 

 
where  is the number of semantic terms. 

The semantic decision ρ  and SDG decision  are 
defined by the following form: 

 ρ = ρ , ρ ,⋯ , ρ                               (5) 
 =                                 (6) 
 

Specifically, Fig. 4 takes the English sentence “Parts of the 
story are ok, but the acting was awful” as an example to 
illustrate the algorithm principle of SDG. First, according to the 
lexical-semantic dictionary, semantic terms “ok”, “but” and 
“awful” are extracted from this sentence. Based on Bayesian 
theory, the posterior probabilities of these three semantic terms 
are then calculated. Furthermore, according to the categories 
“positive” and “negative”, semantic decision ρ  for this 
sentence is calculated as 0.4 and 0.6, which is utilized to correct 
CNN model. As shown in Fig. 4, the strategy of SDG can utilize 
semantic knowledge to correct the CNN decision ρ  and 
improve the accuracy of diagnostic models. 

III. EXPERIMENTS AND RESULTS 

A. Datasets 
There are four kinds of Chinese EMR from the pediatric 

department which have been collected. We denote them as 7-
classification, 8-classification, 32-classification, and 63-
classification. The details of the experimental datasets can be 
observed in Table II. For each dataset, data were randomly 
divided into train, validation, and test set in 8:1:1 ratio for five 
times, yielding five trained models, and we report the average 
performance. 

 
TABLE II 

DISTRIBUTION OF THE DATASETS 
Application Name of diseases #Samples

Seven-
classification 

allergic rhinitis, bronchitis, acute bronchitis, 
respiratory disease, bronchial asthma, (no critical), 

diarrhea, cough variant asthma 
49,333 

Eight-
classification 

acute upper respiratory tract infection, allergic 
rhinitis, bronchitis, acute bronchitis, respiratory 
disease, bronchial asthma (no critical), diarrhea, 

cough variant asthma 

93,428 

32-
classification See appendix 133,861

63-
classification See appendix 145,712

B. Experimental Setup 
“Jieba” Chinese text segmentation system with a precise 

pattern has been adopted for EMR segmentation. Additionally, 
the lexical-semantic dictionary was applied in the process of 
word segmentation to make unregistered medical words be 
correctly segmented.  
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Fig. 4 Algorithm principle of SDG. An example to illustrate the 

algorithm principle of SDG, that is, how to use semantic decision 
based on the lexical-semantic dictionary to guide CNN’s optimization 

 
After word segmentation, the EMR data need to be further 

transformed into word vectors that the computer can recognize 
and process. According to our LSV strategy, two kinds of 
vectors were combined to form the input of the basic CNN 
model: one was the embedded word vector by word2vec and 
the other was the LSV generated based on the lexical-semantic 
dictionary. Continuous Bag of Words (CBOW) method in 
word2vec was applied for feature representation. Different 
dimensions of embedded word vectors should be used for 
classification problems with different scales [21]. Therefore, 
the length of 50, 80 and 100 has been explored to be the 
dimension of = , ,⋯ ,  for different sizes EMR 
datasets. In the 7-classification application, words were 
embedded in the 50-dimensional vector space. Taking cough 
and fever as examples, they were converted into vectors, 
expressed as [−3.982, − 0.670, − 1.754, ..., 3.048]50 and 
[−4.487, − 5.976, − 5.417, ..., 1.216]50. 

To obtain the best schema of the CNN model, we used a grid 
search method to find an optimized set up of parameters, 
including convolution kernel size, dropout rate, activation 
function, and mini-batch size, etc. The optimal parameter setup 
is shown in Table III. 

Admittedly, each of two strategies, LSV or SDG can be 
incorporated with CNN, which forms LSV-CNN model and 
SDG-CNN model, respectively. Thus, this paper takes LSV-
CNN model, SDG-CNN model, and CNN as baselines. We 
established CNN, LSV-CNN, SDG-CNN and LSV-SDG-CNN 
on four kinds of EMR datasets for model performance 
comparison. Precision, accuracy and F1 score are used to 
evaluate the performances of these models. And we use cross 
validation to reduce the likelihood of overfitting. 

TABLE III 
PARAMETERS OF CNN MODEL 

Parameter name Parameter values 
number of layers 1 

convolution kernels size 7 
number of channels 128 

dropout rate 0.5 
activation function Relu 

mini-batch size 64 
optimizer AdaMax 

loss function categorical cross entropy

C. Results  
Tables IV-VII report the performances of CNN, LSV-CNN, 

SDG-CNN, and LSV-SDG-CNN on four kinds of datasets. And 
the loss during the training process in the 7-classification 
dataset are shown in Fig. 5. 

 
TABLE IV 

MODEL PERFORMANCE ON 7-CLASSIFICATION DATASET 
Model precision(%) accuracy(%) F1-score(%)
CNN 83.94 83.72 83.78 

LSV-CNN 84.23 84.09 84.13 
SDG-CNN 85.92 85.74 85.78 

LSV-SDG-CNN 86.40** 86.15** 86.20** 
Significantly outperforms CNN at the: ** 0.01 and * 0.05 level, ANOVA. 

 
TABLE V  

MODEL PERFORMANCE ON 8-CLASSIFICATION DATASET 
Model precision(%) accuracy(%) F1-score(%)
CNN 82.35 82.55 82.27 

LSV-CNN 82.63 82.83 82.60 
SDG-CNN 83.82 83.95 83.72 

LSV-SDG-CNN 84.14** 84.27** 84.06** 
Significantly outperforms CNN at the: ** 0.01 and * 0.05 level, ANOVA. 

 
TABLE VI  

MODEL PERFORMANCE ON 32-CLASSIFICATION DATASET 
Model precision(%) accuracy(%) F1-score(%)
CNN 73.09 73.54 72.50 

LSV-CNN 73.52 73.92 72.98 
SDG-CNN 74.46 74.76 73.93 

LSV-SDG-CNN 74.72** 75.04** 74.24** 
Significantly outperforms CNN at the: ** 0.01 and * 0.05 level, ANOVA. 

 
TABLE VII 

MODEL PERFORMANCE ON 64-CLASSIFICATION DATASET 
Model precision(%) accuracy(%) F1-score(%)
CNN 70.59 71.20 69.61 

LSV-CNN 71.28 71.86 70.56 
SDG-CNN 72.47 72.71 71.59 

LSV-SDG-CNN 72.75** 73.03** 71.89** 
Significantly outperforms CNN at the: ** 0.01 and * 0.05 level, ANOVA. 

 
To investigate the effect of LSV and SDG strategies, we 

calculated the statistical significance of verification accuracy on 
different models using analysis of variance (ANOVA) of 
factorial design. The experimental results indicate that LSV and 
SDG strategies are feasible and effective to improve the 
accuracy of traditional deep learning, with statistical 
significance. 
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It can be seen from Tables IV-VII that, (1) Both LSV-CNN 
and SDG-CNN outperform the basic CNN model, and LSV-
SDG-CNN models outperform other models. Therefore, we can 
draw the conclusion that the integration of a large amount of 
lexical-semantic knowledge into the deep learning model 
optimizes the deep learning model and the algorithm proposed 
in this paper can be applied to other deep learning models. (2) 
Comparing LSV-CNN models with SDG-CNN models, we can 
find that SDG-CNN models outperform LSV-CNN models by 
1-2% F1 score. It can be concluded that, compared with the 

strategy of LSV, the strategy of SDG has a greater contribution 
to the optimization of the CNN model in this experiment. (3) 
With respect to different datasets, these four kinds of models on 
the seven-classification dataset outperform models on the other 
datasets by 1-14% accuracy, precision and F1 score, which may 
be attributed to more balanced data and fewer disease types. (4) 
The LSV-SDG-CNN model performs best on a seven-
classification dataset, with a precision up to 86.40%, an 
accuracy up to 86.15%, and an F1 score up to 86.20%. 

 

                  
(a) CNN                                                                                            (b) LSV-CNN 

 

             
(c) SDG-CNN                                                                                  (d) LSV-SDG-CNN 

Fig. 5 Loss of validation on seven-classification dataset 
 

IV. CONCLUSION 
In this paper, we demonstrated the feasibility of performing 

Pediatric disease diagnosis integrating lexical-semantic 
knowledge from entities into the deep learning model. Numbers 
of prior studies have been conducted on disease diagnosis with 
the aid of entities or medical terms [22], [23]. However, all 
these studies just focused on extracting entities from raw 
medical texts and splicing the entities vectors with medical text 
vectors. Comparing with previous approaches, we illustrated an 
implementation that utilizes lexical semantics fully and finely 
to guide deep learning. We provide a paradigm for the 
construction of medical lexical semantic dictionary with two 
aspects and 11 groups. Based on the lexical semantic dictionary, 
medical terms in EMR data are vectorized to generate LSV and 

then concatenated with EMR vectors to enrich feature 
representation. Additionally, the semantic distribution of 
medical terms serves as SDG to adjust the pattern recognition. 
We saw improvements when including LSV as features and 
optimizing CNN with SDG. Remarkably, we were able to see 
further improvement when employing both LSV and SDG 
strategies. LSV-SDG-CNN models introduced more predictive 
power to the configurations. To the best of our knowledge, this 
is the first study that incorporates lexical-semantic knowledge 
into CNN model for pediatric disease diagnosis.  

There are still some limitations to our study. Although LSV 
enriches the feature representation by using the semantics of 
entities and entity analogies, the results in prediction tasks are 
not outstanding enough. It ignores the semantic relationship 
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between entities. More investigations are also called for to 
validate the utility of our model. 

APPENDIX 
TABLE VIII 

THE DISTRIBUTION OF PEDIATRIC EMR DATASETS 
#diseases Name of diseases #samples

7 
allergic rhinitis, bronchitis, acute bronchitis, respiratory 
disease, bronchial asthma (no critical), diarrhea, cough 

variant asthma 
49,333 

8 

acute upper respiratory tract infection, allergic rhinitis, 
bronchitis, acute bronchitis, respiratory disease, 

bronchial asthma (no critical), diarrhea, cough variant 
asthma 

93,428 

32 

acute upper respiratory tract infection, allergic rhinitis, 
bronchitis, acute bronchitis, respiratory disease, 

bronchial asthma(no critical), diarrhea, cough variant 
asthma, acute asthmatic bronchitis, abdominal pain, 
enterovirus infection, fever, acute nasopharyngitis, 

cough, herpangina, acute tonsillitis, health examination, 
infantile enteritis, growth hormone deficiency, acute 
suppurative tonsillitis, acute sinusitis, gastroenteritis, 
acute gastroenteritis, urinary tract infection, asthmatic 

bronchitis, epilepsy, pneumonia, constipation, 
indigestion, acute lower respiratory tract infection, 

mycoplasma infection 

133,861

63 

acute upper respiratory tract infection, allergic rhinitis, 
bronchitis, acute bronchitis, respiratory disease, 

bronchial asthma(no critical), diarrhea, cough variant 
asthma, acute asthmatic bronchitis, abdominal pain, 
enterovirus infection, fever, acute nasopharyngitis, 

cough, herpangina, acute tonsillitis, health examination, 
infantile enteritis, growth hormone deficiency, acute 
suppurative tonsillitis, acute sinusitis, gastroenteritis, 
acute gastroenteritis, urinary tract infection, asthmatic 

bronchitis, epilepsy, pneumonia, constipation, 
indigestion, acute lower respiratory tract infection, 

mycoplasma infection, nausea and vomiting, idiopathic 
thrombocytopenia purpura(ITP), acute lymphoblastic 
leukemia, infantile diarrhea, gastritis, allergic purpura, 

gastrointestinal dysfunction, neonatal 
hyperbilirubinemia, hematuria, tic disorders, digestive 
system disease, upper respiratory tract hypersensitivity 

reaction, enuresis, neonatal jaundice, enteritis, 
mucocutaneous lymph node syndrome, renal allergic 
purpura, ulcerative stomatitis, routine examination of 
children’s health, herpangina, chronic sinusitis, upper 
respiratory disease, stomatitis, right inguinal hernia, 

hyperthyroidism, anemia, helicobacter pylori infection, 
acute pharyngitis, left inguinal hernia, headache, acute 

laryngitis 

145,712
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