
World Academy of Science, Engineering and Technology
International Journal of Mechanical and Industrial Engineering

Vol:15, No:9, 2021

Abstract—E-maintenance is a relatively recent concept, generally

referring to maintenance management by monitoring assets over the
Internet. One of the key links in the chain of an e-maintenance system
is data acquisition and transmission. Specifically for the case of a fleet
of heavy-duty vehicles, where the main challenge is the diversity of
the vehicles and vehicle-embedded self-diagnostic/reporting
technologies, the design of the data acquisition and transmission unit
is a demanding task. This is clear if one takes into account that a heavy-
vehicles fleet assortment may range from vehicles with only a limited
number of analog sensors monitored by dashboard light indicators and
gauges to vehicles with plethora of sensors monitored by a vehicle
computer producing digital reporting. The present work proposes an
adaptable internet of things (IoT) sensor node that is capable of
addressing this challenge. The proposed sensor node architecture is
based on the increasingly popular single-board computer – expansion
boards approach. In the proposed solution, the expansion boards
undertake the tasks of position identification, cellular connectivity,
connectivity to the vehicle computer, and connectivity to analog and
digital sensors by means of a specially targeted design of expansion
board. Specifically, the latter offers a number of adaptability features
to cope with the diverse sensor types employed in different vehicles.
In standard mode, the IoT sensor node communicates to the data center
through cellular network, transmitting all digital/digitized sensor data,
IoT device identity and position. Moreover, the proposed IoT sensor
node offers connectivity, through WiFi and an appropriate application,
to smart phones or tablets allowing the registration of additional
vehicle- and driver-specific information and these data are also
forwarded to the data center. All control and communication tasks of
the IoT sensor node are performed by dedicated firmware.

Keywords—IoT sensor nodes, e-maintenance, single-board
computers, sensor expansion boards, on-board diagnostics.

I. INTRODUCTION
HE management of a fleet of heavy-duty vehicles/
machinery, both in the day-to-day and long-term scale, is a

quite challenging task. Usually, such fleets comprise hundreds
or even thousands of members, characterized by a wide range
of types, age, technologies etc. Moreover, each fleet member’s
condition depends on operators’ competence and operating
conditions (e.g., environmental temperatures, sand, sea). The
conventional strategy of periodic maintenance, i.e., regular
maintenance according to a specific schedule (e.g., upon
completion of a specific number of working hours of the
vehicle/machinery) is not time- and cost-efficient, while there
is no alarm of a possible upcoming breakdown [1].

E-maintenance is a multidisciplinary field developing during

G. Charkoftakis, P. Liosatos, N.-A. Tatlas, and S. M. Potirakis are with the

Electrical and Electronics Engineering Department of the University of West
Attica, Ancient Olive Grove Campus, 250 Thivon and P. Ralli, Aigaleo, Athens
GR-12244, Greece (e-mails: ntatlas@uniwa.gr, spoti@uniwa.gr).

the last two decades [2]. Despite the fact that different
definitions have been proposed in the literature [3], [4], a
generic enough one is that e-maintenance refers to the
“maintenance management concept whereby assets are
monitored and managed over the Internet” [3]. It should also be
stressed that e-maintenance is considered to comply with
Industry 4.0, offering an effective as well as efficient assets’
management by means of applying mechanical, electrical, and
computer engineering in a cooperative way [5], [6].

An e-maintenance solution for the demanding case of diverse
heavy-vehicles fleet is the “InteligentLogger” system [7]. A
fundamental component of InteligentLogger is the network of
IoT sensor nodes that undertake the acquisition of
vehicle/machinery-related data in real time, which are
appropriately processed by artificial intelligence (AI) models in
order to detect abnormal behaviors, which in turn feed business
intelligence (BI) models for the production of reports,
dashboard and alerts [7].

The present work presents a versatile IoT sensor node that
was specifically designed for InteligentLogger. A number of
works focusing on IoT sensors for vehicle applications have
already been published, some of them are focusing on smart
vehicles, e.g., [8]-[11], while others are focusing on fleet
management, e.g., [1], [12]. However, the proposed IoT sensor
node differentiates from other, already proposed, vehicle-
oriented IoT sensors/sensor nodes because of its dedicated
design aimed to serve fleets of heavy-duty vehicles/machinery
of high diversity. It is capable of acquiring information from a
wide range of possible sources such as on-board diagnostics
(OBD), analog and digital sensors, as well as of providing
position identification using the global navigation satellite
system (GNSS), and is characterized by versatility, a quality
essential for addressing the problem of being appropriate for all
members of a highly diverse heavy-duty vehicles fleet.

The rest of the paper is organized as follows: Section II
provides a brief presentation of the InteligentLogger system,
while it also provides the specifications of the IoT sensor node;
Section III presents the system level design of the proposed IoT
sensor node; Section IV presents details of the hardware design;
Section V presents details of the software design.

II. INTELIGENTLOGGER DESCRIPTION: SPECIFICATIONS FOR THE
IOT SENSOR NODE

InteligentLogger implements a bottom-up architecture,

D. Goustouridis is with the Thetametrisis SA, Christou Lada 40, Peristeri,
Athens, GR-12132, Greece (e-mail: dgoustouridis@thetametrisis.com).

George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

An E-Maintenance IoT Sensor Node Designed for
Fleets of Diverse Heavy-Duty Vehicles

T

409International Scholarly and Scientific Research & Innovation 15(9) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 I

nd
us

tr
ia

l E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

9,
 2

02
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

26
4/

pd
f

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Industrial Engineering

Vol:15, No:9, 2021

which can be briefly described as follows [7]:
 The IoT sensor node in each equipment acquires real time

information directly from the machine and transmits them
to the cloud ‘Sensor Consolidation Service’ (SCS).

 In case of lack of infrastructure networks at the worksite, a
specific android application (that can run on any android
device) downloads the IoT sensor node data and uploads
them to the cloud as soon as the android device is moved
to a location that a network is available. Furthermore, the
android application can be used to register data that cannot
be automatically recorded.

 The SCS collects the following data: device ID, timestamp,
longitude, latitude and up to 8 analog and 3 digital sensors
readings, depending on each sensor node configuration. It
filters out invalid records and measurements and outputs
equipment information and its operating data.

 These data are temporarily stored and then fed to a machine
learning (ML) model for fault detection.

 Also, they are feed to a geofencing algorithm to identify
cases of theft or inappropriate use.

 All results from both systems are feed to the data
warehouse (DWH).

 The DWH is used as a data source to the BI suite, which
finally produces corporate reports, worksite reports and
sensor alerts.

As apparent, InteligentLogger relies on the IoT sensor nodes
for the reliable acquisition of key information from the assets.
In this sense, the IoT sensor nodes form the “frontline” in
solving the problem of managing a fleet of wide variety. A key
issue in successfully addressing this complicated problem is the
careful selection of the main connectivity specifications as well
as the minimum information that should be available from each
heavy-duty vehicle/machinery.

TABLE I

MINIMUM SET OF EQUIPMENT INFORMATION AND OPERATING DATA
ACQUIRED BY ANY IOT SENSOR NODE OF INTELIGENTLOGGER

Object Note

GNSS position {LAT, LON}
Taken from GPS module

Time Stamp
{TIME, DATE}

Included in every sample,
taken from GPS module or NTP

Vehicle ID {Vehicle ID}
Set by the user

Battery Voltage

{Sensor Data}
Taken from sensors connected to the IoT

device through the
Expansion Board Interface

Hydraulic Pressure
Engine Cooling Lubricant
Temperature and Pressure

Throttle voltage
Fuel Tank Level

Fuel Flow Control
Generic Sensor
Vehicle Speed

{Sensor Data/Alarms}
Taken from the OBD

Vehicle RPM
Engine/Coolant Temperature

Fault Alarms
Generic Sensor

The InteligentLogger IoT sensor node should meet the

following requirements:
 GNSS position acquisition.
 Connectivity to OBD for sensor data/alarm acquisition.
 Cellular connectivity by means of 3G/long-term evolution

(LTE) modem for the transmission of recorded data.
 WiFi connectivity to mobile devices equipped with an

appropriate android application for transferring (on
demand) the IoT sensor node recordings.

 On-board temperature/relative humidity sensor.
 Eight analog plus three digital sensor channels for direct

connection to vehicle/machinery sensors.
 The minimum set of equipment information and operating

data indications that each InteligentLogger IoT sensor node
should record in real time are presented in Table I.

III. GENERAL DESCRIPTION OF THE PROPOSED SOLUTION
The proposed IoT sensor node comprises two subsystems:

the Main Control Unit (MCU) and the Expansion Board
Interface (EBI). Fig. 1 shows the general block diagram of the
InteligentLogger IoT sensor node.

The EBI implements an eight-channel analog sensors
acquisition system, providing with the appropriate matching
circuits for 8 analog sensors, as well as the necessary signal
conditioning, filtering, ending-up to the analog to digital
conversion (A/D). Moreover, EBI provides connectivity to 3
digital sensors, as well as a built-in temperature/relative
humidity sensor. The standard configuration of the 8 analog
channels includes 4 voltage sensors and 4 current loop sensors
4-20 mA (2-wires). The versatility of the proposed IoT sensor
node lies both in offering a variety of sensor type interfaces
(analog voltage, analog current loop, digital), as well as in the
ability to implement a wide variety of connected sensor
configurations, with minimal modifications to the analog
printed circuit. A basic condition for the smooth operation of
the system is that for each connected analog sensor the proper
external power supply has been ensured and its calibration table
has been registered in the digital system. The connection
between the EBI and the MCU is achieved through a serial I2C
protocol interface.

The MCU is based on the very popular single-board
computer Raspberry Pi. The MCU performs the required
control, storage and management of the receiving data provided
by the EBI. In standard mode, the MCU communicates with the
SCS through a 4G/LTE modem, transmitting all
digital/digitized sensor data, IoT device identity and position.
Moreover, it offers connectivity to OBD of the heavy-duty
vehicles as also WiFi connectivity to mobile devices equipped
with an appropriate application for the manual registration of
information about the vehicle and the driver that cannot be
automatically acquired, as well as for the on demand local
downloading of IoT sensor node recordings, e.g., in cases that
cellular network is not available at the worksite. Dedicated
firmware performs all communication and control tasks of the
MCU. It is programmed with a high-level language (Python) on
top of a modern operating system (Linux).

410International Scholarly and Scientific Research & Innovation 15(9) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 I

nd
us

tr
ia

l E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

9,
 2

02
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

26
4/

pd
f

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Industrial Engineering

Vol:15, No:9, 2021

Fig. 1 General block diagram of the InteligentLogger IoT sensor node
system

Both subsystems are powered by + 12 V or + 24 V, which is

supplied via the heavy-vehicle /machinery battery.
The developed prototype of the InteligentLogger IoT sensor

node is illustrated in Fig. 2.

IV. HARDWARE DESIGN DESCRIPTION
The internal configuration of MCU is shown in Fig. 3 and

includes a Raspberry Pi 3 board [13] equipped with an AutoPi
shield board [14].

The main reason for choosing Raspberry Pi [14] compared to
other microcomputers and micro-controllers, is that the specific
computer is a complete, low cost, and low power "pocket"
computer. It comprises a 64-bit quad core processor running at
1.4 GHz, dual-band 2.4 GHz and 5 GHz wireless LAN,
Bluetooth 4.2/BLE, faster Ethernet and an electronic hardware
connectivity via several available communication protocols
(UART, I2C SPI). Thanks to the built-in programmable
microcontroller with the Extended 40-pin GPIO header
accessible, it forms a great development tool for integrated
automation systems.

Fig. 2 Top and bottom view of the prototype of an InteligentLogger

IoT sensor node

Fig. 3 Block diagram of the MCU subsystem

AutoPi [14] integrates a range of electronic circuits and

sensors that adapt the MCU to the needs of a mobile data
collection unit. AutoPi is a solution based on Raspberry Pi 3
(RPi3) technology, but it also uses several other high-tech tools
that grant users access to valuable functions. AutoPi integrates

411International Scholarly and Scientific Research & Innovation 15(9) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 I

nd
us

tr
ia

l E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

9,
 2

02
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

26
4/

pd
f

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Industrial Engineering

Vol:15, No:9, 2021

a number of sensors that are needed for a vehicle tracking and
telemetry application. The high speed 4G/LTE modem and the
GNSS (GPS) are a single module while there is a popular
ELM327 controller for OBD interface. The Wi-Fi is provided
by RPi3 that boots from a microSD card. AutoPi is interfaced
with RPi3 by a single USB port that provides a number of
virtual communication ports per peripheral. AutoPi is providing
all the necessary glue logic and power adaptation circuits for its
peripherals, thus only single USB supply is needed.

The EBI (Fig. 4) offers 8 analog sensors input channels: 4
current sensor interface channels (channels no. 1 to no. 4) and
4 voltage sensor interface channels (channels no. 5 to no. 8).
The sensor signal of each channel reaches the A/D through the
following 4 stages (Fig. 5): matching circuit, level shifting, pre-
amplification, anti-aliasing filter.

A/D converts the signal into a suitable digital format that can
be received and processed by the microprocessor of the MCU.
Two constant current source circuits are available whenever
required (optional use). In addition, 3 digital output sensors can
be routed to the MCU (channels no. 9 to 11), using one of the
following communication protocols: UART or I2C. One digital
sensor is already mounted on board of the EBI to measure

temperature and relative humidity in the IoT sensor node.

Fig. 4 Block diagram of the EBI subsystem

Fig. 5 Block diagram of analog signal digitization circuitry (one channel)

The InteligentLogger IoT sensor node system is powered
from the battery of the heavy vehicle (+12 V or +24 V dc). On
board there are also two dc-to-dc converters: one to provide the
main power supply of +5 V/2 A of the EBI and a second one to
provide +24 V/ 125 mA, required for the driving circuits of the
4-20 mA current sensors.

The voltage divider in Fig. 5 creates the required Voffset. This

voltage corresponds to the minimum input voltage (Voffset =
Vmin) received by the analog sensor and which must be
removed. The level shifting and pre-amplifier stages are based
on an operational amplifier used as a differential amplifier with
adjustment gain. The output voltage of the analog circuit (Vout)
is equal to the voltage received by the sensor (Vin), minus Voffset,
multiplied by the appropriate gain: Vout = (Vin - Voffset) x Gain).

412International Scholarly and Scientific Research & Innovation 15(9) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 I

nd
us

tr
ia

l E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

9,
 2

02
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

26
4/

pd
f

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Industrial Engineering

Vol:15, No:9, 2021

This output voltage should not exceed the maximum input
voltage specified by the A/D. In Fig. 5 the first operational
amplifier is used as a buffer to completely isolate the Voffset
voltage regulation from the rest of the circuit, while the last
stage of the analog circuit, before the A/D converter, is a third-
order Butterworth Low Pass Filter.

The proposed IoT sensor node offers a number of
adaptability features, with the ability to interconnect and drive
a number of analog output sensors for heavy-duty vehicles,
based on appropriate zero-ohm resistor placement and
appropriate value selection for limited number of passive
components of the signal conditioning circuit of each channel
of EBI.

V. SOFTWARE DESIGN DESCRIPTION
The MCU (Fig. 3) is using a number of wired plus wireless

interfaces. The wired interfaces are I2C plus USB interfaces.
The wireless interfaces are used to transmit data using LTE or
Wi-Fi. A number of virtual UART interfaces are created over
USB in order to interface with the GNSS subsystem and the
OBD controller. A virtual QMI over USB interface is used to
connect to the high speed 4G/LTE modem. The heart of the
computing system is the RPi3 single board computer running
Linux Ubuntu distribution. The RPi3/Linux ecosystems allow
virtually any type of high-level server/application running using
any external interface or peripheral. This versatility and
plethora of options made RPi3/Linux combined with AutoPi the
best option for our application.

The easy to use and popular Python version 3 with a number
of libraries (Table II) was the best programming choice.

TABLE II

PYTHON LIBRARIES USED
Library Usage
pyserial Generic UART interface

pynmea2 NMEA-0183 protocol handling (GNSS)
sqlite3 sqlite3 interfacing

ADCDifferentialPi MCP3424 interfacing (ADC)
python-obd ELM327 interfacing (OBD)

request HTTP/POST/REST interfacing

The combined use of a high-level operation system (Linux)
with a versatile language (Python 3) allowed us to:
 Use existing drivers for all peripherals. Almost every

peripheral has a driver for Linux OS.
 Use existing libraries for high level protocols. Python is a

programming language that is notorious for the enormous
pool of readily available libraries and support base.

 Debug and maintain everything with ease, since text file
debug logs and printed messages could be combined with
exception errors.

 Simplify maintenance and upgrade by using remote access
through Wi-Fi or 4G/LTE. A dynamic DNS service with
OpenVPN and SSH is integrated to allow secure access
even from remote locations.

The GNSS subsystem is using the GPS position system with
the standard NMEA-0183 protocol. This protocol is an ASCII

protocol over UART that needs to be parsed in order to obtain
machine to machine interaction, meaning that the longitude and
latitude values should be obtained as floating numbers to be
communicated to the SCS interface. The A/D’s are using the
I2C subsystem that needs a specialized library
(ADCDifferentialPi). The OBD is also using a library (python-
obd) that interacts with the vehicle on board computer,
specialized OBD codes are issued to get responses. The OBD is
interfaced using the popular ELM327 IC that is using a UART
interface with RPi3. The python-obd library allows a generic
approach to almost any vehicle type and low-level physical
interface. Each vehicle supports a number of “common” OBD
commands and a number of “custom” OBD commands that are
usually undocumented. The “common” OBD commands have
initially be used in our application to acquire the following
parameters:
 Vehicle speed
 Vehicle engine rpm
 Coolant temperature
 Diagnostic Trouble Codes (DTC).

The trouble codes provide an important maintenance
information. To ease software development an OBD emulator
was used that could also emulate a number of simultaneous
DTC codes.

Finally high-level libraries such as sqlite3 were used to
maintain a local record database. The intuition behind this
functionality is simple, we assume that there is not always
connection with the SCS. This can be for long times in case that
the vehicle operates in remote and network-isolated locations.
In this case all measurements are stored in a local database and
recalled when there is a valid SCS connection or on demand by
a mobile device running an appropriate android application.

At first a number of Python scripts were developed, one
script per peripheral. Each peripheral operation could be readily
checked for proper operation. These scripts were also the
building stones for the main application. During the
initialization of the application, the proper operation of each
peripheral could be verified. For the wireless communication
interfaces, proper driver interfaces and network routing were
verified. The Linux is implementing a full featured TCP/IP
stack with full networking capabilities. Python can exploit these
capabilities to build a full-blown network application. The
developed software application has the following features:
 Wireless communication with Wi-Fi and 4G/LTE

interfaces.
 Parsing and accessing the positioning information obtained

by the GNSS subsystem.
 Acquiring sensor information from the A/D’s interface.
 Interfacing with the OBD ELM327 IC, acquiring operating

parameters and fault codes.
 Storing each measurement as a record in a local database

(SQLite)
 Storing diagnosing information in case of sensor or

subsystem malfunction.
 Storing each record in a structured manner so that it can be

acquired by a machine-to-machine interface.
 Being able to keep connection with SCS. If there is no

413International Scholarly and Scientific Research & Innovation 15(9) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 I

nd
us

tr
ia

l E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

9,
 2

02
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

26
4/

pd
f

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Industrial Engineering

Vol:15, No:9, 2021

connection the records are kept until safely transmitted.
 Keeping connection with SCS and sending records using a

high-level protocol based on HTTP/POST/REST API.
The flow of the IoT sensor node software application is

shown in Fig. 6. For convenience, the flow is shown for 2
sensors only. At first an initialization phase is performed; the
sensors and their interfaces are initialized to their operating
parameters. Any existing malfunctions are detected and are
recorded as faults for transmission to the SCS. Next the sensors
are sampled in a periodic manner according to their
specification. The sampling time is configurable. Every 15
seconds an RMC message is received from the GNSS, this
message contains the longitude, latitude, speed and validity of
the information. Every 60 seconds the information from the
A/D’s, Temperature/Humidity sensor, Digital I/O and OBD is
acquired.

Fig. 6 Software application flow

After each sensor sampling the system checks the SCS

connection, if it is valid the record is transmitted immediately,
if not it is written in the local database. Periodically the system
checks if there are records in the database, these are records that
have not been transmitted. Then a transmission is attempted
using the oldest record first. The database handling is
performed by using SQL high level commands, thus record
manipulation can include searching, adding and deleting.

The transmission to SCS is done with cloud messaging by
using the azure.servicebus protocol. This messaging protocol
includes also the confirmation that the record is successfully
delivered to the server. If confirmation is received the record

should not be written to the database if it is just acquired by a
sensor or it should be deleted from the database if it is retrieved
for transmission.

The messages format is JSON, this is a human readable
format that is also a very common in use. Fig. 7 shows an
example of how the vehicle location information is transmitted
using this format. “veh_id” is a unique code for every vehicle
and “status” depict specific status information at the time
information was acquired. “date” and “time” are the timestamp
of the sample. “gps_speed”, “lat” and “lon” where directly
acquired by the GPS sensor. In similar way, we have specified
three more messages. A generic sensor message may contain all
the A/D sensor values, the OBD acquired values plus any other
generic sensor value. An OBD fault message may contain DTC
codes and a diagnostic message may contain any IoT Sensor
Node diagnostic codes.

Fig. 7 A GNSS record with JSON format

An important system function is how the timestamp is

obtained. The operating system should always use a valid time
service. The RPi3 is not having a real time clock circuit so the
valid time should be obtained every time the system boots.
When the system boots the application, it is testing for a valid
internet connection, in this case the system time is updated
using the NTP service. If for any reason there is no internet
connection, the system time is acquired from a valid GNSS
signal. The GPS is a provider of accurate clock information.
The application halts into a loop trying to acquire a valid system
time, until a valid clock is acquired any other operation is
prohibited.

At the end of our development, we were confident that we
could use a high-level OS and low-cost hardware for a
demanding telemetry application. Linux is open source and free
of charge, it has a huge support base. RPi3 is a very low-cost
computing multicore platform that can exploit the features of
Linux OS. We could integrate everything with a plethora of
interfaces and maintenance/debugging options. We could
appreciate all the high-level functionality of networking
interfaces and database management. They offer the highest
flexibility with proven software packages. Telematics hardware
is usually using embedded microcontrollers with or without an
RTOS. Still such level of versatility is not existent. For
example, remote access with OpenVPN/SSH is almost

414International Scholarly and Scientific Research & Innovation 15(9) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 I

nd
us

tr
ia

l E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

9,
 2

02
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

26
4/

pd
f

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Industrial Engineering

Vol:15, No:9, 2021

impossible to achieve due to memory constraints and database
is limited to serial records or linked lists in non-volatile
memory. RPi3 is using a multi gigabyte micro-SD that gives in
practice unlimited space.

VI. CONCLUSION
In the present paper, we presented the design of an IoT sensor

node appropriate for the InteligentLogger system, which is an
e-maintenance system for heavy-duty vehicles/machinery. The
specific IoT sensor node provides compatibility with both old
and new technology vehicles through a variety of available
sensor interfaces and OBD interfaces while at the same time it
provides positioning information. All information is
transmitted in real-time through a cellular network when/where
network coverage is provided. Alternatively, one can directly
download the information through WiFi by using a smartphone
or a tablet running an appropriate application and transmitted to
the database as soon as the smartphone/tablet connects to the
internet. More information about parameters that cannot be
automatically acquired can also be inserted through the specific
application. A functional prototype of the specific IoT sensor
node has already been produced, tested at the laboratory, and
has currently been put in on-vehicle test operation. The specific
IoT sensor node is expected to play a decisive role in the
successful solution of the challenging task of diverse heavy-
duty vehicles/machinery fleets by the IntelligentLogger system.

ACKNOWLEDGMENT
This research has been co-financed by the European Union

and Greek national funds through the Operational Program
Competitiveness, Entrepreneurship and Innovation, under the
call RESEARCH—CREATE—INNOVATE (project code:
T1EDK- 01359, IntelligentLogger).

REFERENCES
[1] S. Mohammad, M. A. A. Masuri, S. Salim, and M. R. Abdul Razak,

“Development of IoT Based Logistic Vehicle Maintenance System,” in
Proc. IEEE 17th International Colloquium on Signal Processing & Its
Applications (CSPA), Langkawi, Malaysia, 2021, pp. 127-132.

[2] B. Iung, E. Levrat, A. Crespo Marquez, and H. Erbe, “Conceptual
framework for e-Maintenance: Illustration by e-Maintenance
technologies and platforms,” Ann. Rev. Control, vol. 33, pp. 220-229,
2009.

[3] E. Levrat, B. Iung and A. Crespo Marquez, “E-maintenance: review and
conceptual framework,” Prod. Plan. Control, vol. 19, no. 4, pp. 408-429,
2008.

[4] A. Muller, A. Crespo Marquez and B. Iung, “On the concept of e-
maintenance: Review and current research,” Reliability Eng. Syst. Safety,
vol. 93, pp. 1165-1187, 2008.

[5] A. Bousdekis and G. Mentzas, “Condition-Based Predictive Maintenance
in the Frame of Industry 4.0,” in Advances in Production Management
Systems. The Path to Intelligent, Collaborative and Sustainable
Manufacturing, H. Lödding et al. (eds.), Cham: Springer, 2017, pp. 399-
406. https://doi.org/10.1007/978-3-319-66923-6_47

[6] R. S. Velmurugan and T. Dhingra, “Asset Maintenance: A Primary
Support Function,” in Asset Maintenance Management in Industry, R. S.
Velmurugan and T. Dhingra (eds.), Cham: Springer, 2021, pp. 1-21.
https://doi.org/10.1007/978-3-030-74154-9_1

[7] D. Goustouridis, A. Sideris, I. Sdrolias, G. Loizos, N. A. Tatlas, and S. M.
Potirakis, “IntelligentLogger: A Heavy-Duty Vehicles Fleet Management
System Based on IoT and Smart Prediction Techniques,” World Academy
of Science, Engineering and Technology, Open Science Index 176,
International Journal of Mechanical and Industrial Engineering, vol.

15(8), pp. 336 - 340, 2021. https://publications.waset.org/10012185/pdf
[8] A. BinMasoud and Q. Cheng, "Design of an IoT-based Vehicle State

Monitoring System Using Raspberry Pi," in Proc. 2019 International
Conference on Electrical Engineering Research & Practice (ICEERP),
2019, pp. 1-6.

[9] S. K. Singh, A. K. Singh, and A. Sharma “OBD - II based Intelligent
Vehicular Diagnostic System using IoT,” in Proc. ISIC’21: International
Semantic Intelligence Conference, Delhi, India, 2021, pp. 511-515.

[10] N. Goyal, V. Goel, M. Anand, and S. Garg, “Smart Vehicle: Online
Prognosis for Vehicle Health Monitoring,” J. Innovation in Computer Sci.
Eng., vol. 9, no. 2, pp. 12-22, Jan-June 2020.

[11] B. C. Nithin, S. Pooja, K. G. Sampath, and S. S. Sharmila, “On-Board
Vehicle Fault Monitoring System”, pices, vol. 4, no. 5, pp. 82-84, Sep.
2020.

[12] S. Hussain, U. Mahmud and S. Yang, "Car e-Talk: An IoT-Enabled
Cloud-Assisted Smart Fleet Maintenance System," IEEE Internet of
Things J., vol. 8, no. 12, pp. 9484-9494, 15 June15, 2021.

[13] R. Barnes, “Raspberry Pi 3: Specs, benchmarks & testing,” The MagPi
Magazine, 2016; https://magpi.raspberrypi.org/articles/raspberry-pi-3-
specs-benchmarks (accessed on 26/06/2021).

[14] L. Hattersley, “Build a car computer 'carputer' with Raspberry Pi,” The
MagPi Magazine, 2019; https://magpi.raspberrypi.org/articles/build-car-
computer-raspberry-pi (accessed on 26/06/2021).

Powered by TCPDF (www.tcpdf.org)

415International Scholarly and Scientific Research & Innovation 15(9) 2021 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 I

nd
us

tr
ia

l E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

9,
 2

02
1

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
12

26
4/

pd
f

http://www.tcpdf.org

