Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: A Study of Regeneration Heat Duty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: A Study of Regeneration Heat Duty

Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao

Abstract:

High pressure carbon dioxide (CO2) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO2 concentration, CO2 loading, reboiler power supply and regeneration heat duty to choose the most efficient solution in terms of CO2 removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that PZ in addition to the mixture of PZ and monoethanolamine (MEA) demand the highest regeneration heat duty compared with other studied single and blended amine solutions respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO2 content in the outlet gas, rich-CO2 loading and regeneration heat duty.

Keywords: Absorption, amine solutions, Aspen HYSYS, CO2 loading, piperazine, regeneration heat duty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525

References:


[1] McCann, N.; Maeder, M.; Attalla, M. Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Ind. Eng. Chem. Res. 2008, 47, 2002-2009.
[2] Nittaya, T.; Douglas, P. L.; Croiset, E.; Ricardez, L. A. Dynamic modeling and evaluation of an industrial-scale CO2 capture plant using monoethanolamine absorption processes. Ind. Eng. Chem. Res. 2014, 53, 11411-11426.
[3] Al-Juaied, M.; Rochelle, G. T. Absorption of CO2 in aqueous diglycolamine, Ind. Eng. Chem. Res. 2006, 45, 2473-2482.
[4] Xu, G.; Zhang, C.; Qin, S.; Wang, Y. Kinetics study on absorption of carbon dioxide into solutions of activated methyldiethanolamine, Ind. Eng. Chem. Res. 1992, 31, 921-927.
[5] Sotelo, J. L.; Benitez, F. J.; Beltran-Heredia, J.; Rodriguez; C. Absorption of carbon dioxide into aqueous solutions of triethanolamine, AICHE J., 1990, 36 (8), 1263-1266.
[6] Hikita, H.; Asai, S.; Ishikawa, H.; Honda, M. The Kinetics of reactions of carbon dioxide with Monoethanolamine, Diethanolamine and Triethanolamine by a rapid mixing method, J. Chem. Eng. 1977, 13, 7-12.
[7] Dugas, R.; Rochelle, G. Absorption and desorption rates of carbon dioxide with monoethanolamine and Piperazine, Energy Procedia, 2009, 1, 1163-1169.
[8] Dugas, R. E.; Rochelle, G. T. CO2 absorption rate into concentrated aqueous monoethanolamine and piperazine, J. Chem. Eng. Data, 2011, 56, 2187-2195.
[9] Zhang, X.; Zhang, C.; Qin, S.; Zheng, Z. A kinetics study on the absorption of carbon dioxide into a mixed aqueous solution of methyldiethanolamine and piperazine, Ind. Eng. Chem. Res. 2001, 40, 3785-3791.
[10] Zhang, X.; Wang, J.; Zhang, C.; Yang, Y.; Xu, J. Absorption rate into a MDEA aqueous solution blended with piperazine under a high CO2 partial pressure, Ind. Eng. Chem. Res. 2003, 42, 118-122.
[11] Zhang, X.; Zhang, C.; Liu, Y. Kinetics of absorption of CO2 into aqueous solution of MDEA blended with DEA, Ind. Eng. Chem. Res. 2002, 41, 1135-1141.
[12] Xiao, J.; Li, C.; Li, M. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol + monoethanolamine, J. Chem. Eng. Sci. 2000, 55, 161-175
[13] Xu, B.; Gao, H.; Chen, M.; Liang, Z.; Idem, R. Experimental study of regeneration performance of aqueous N,N-diethylethanolamine solution in a column packed with dixon ring random packing, Ind. Eng. Chem. Res. 2016, 55, 8519-8526.
[14] Samanta, A.; Roy, S.; Bandyopadhyay S. S. Physical solubility and diffusivity of N2O and CO2 in aqueous solutions of Piperazine and (N-Methyldiethanolamine + Piperazine), J. Chem. Eng. Data. 2007, 52, 1381-1385.
[15] Versteeg, G. F.; van Swaaij, P. M., Solubility and Diffusivity of Acid Gases (CO2, N2O) in Aqueous Alkanolamine Solutions, J. Chem. Eng. Data. 1988, 33, 29-34.
[16] Wang, Y. W.; Xu, S.; Otto, F. D.; Mather, A. E. Solubility of N2O in alkanolamines and in mixed solvents, Chem. Eng. J. 1992, 48, 31-40.
[17] Jassim, M. S.; Rochelle, G.; Eimer, D.; Ramshaw, C. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed, Ind. Eng. Chem. Res. 2007, 46, 2823-2833.
[18] Bishnoi, S.; Rochelle, G. T. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility, J. Chem. Eng. Sci. 2000, 55, 5531-5543.
[19] Kim, Y. E.; Lim, J. A.; Jeong, S. K.; Yoon, Y. I.; Bae, S. T.; Nam, S. C. Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA and AMP solutions, Bull. Korean Chem. Soc. 2013, 34 (3), 783-787.
[20] Sakwattanapong, R.; Aroonwilas, A.; Veawab, A. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines, Ind. Eng. Chem. Res. 2005, 44, 4465-4473.
[21] Nwaoha, C.; Saiwan, C.; Supap, T., Idem, R. Regeneration energy analysis of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP), methyldiethanolamine (MDEA) and diethylenetriamine (DETA) for carbon dioxide (CO2) capture, Energy Procedia, 2017, 114, 2039-2046.
[22] Kim, H.; Hwang, S. J.; Lee, K. S. Novel shortcut estimation method for regeneration energy of amine solvents in an absorption-based carbon capture process, Environ. Sci. Technol. 2015, 49, 1478-1485.
[23] Gao, H.; Wu, Z.; Liu, H.; Luo, X.; Liang, Z. Experimental studies on the effect of tertiary amine promoters in aqueous monoethanolamine (MEA) solutions on the absorption/stripping performances in post-combustion CO2 capture, Energy Fuels, 2017, 31, 13883-13891.
[24] Curnow, O. J.; Krumdieck, S. P.; Jenkins, E. M. Regeneration of carbon dioxide saturated monoethanolamine-glycol aqueous solutions at atmospheric pressure in a packed bubble reactor, Ind. Eng. Chem. Res. 2005, 44, 1085-1089.
[25] Warudkar, S. S.; Cox, K. R.; Wong, M. S.; Hirasaki, G. J. Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part I. high pressure strippers, J. Greenhouse Gas Control, 2013, 16, 342-350.
[26] Zhang, X.; Fu, K.; Liang, Z.; Rongwong, W.; Yang, Z; Idem, R. Experimental studies of regeneration heat duty for CO2 desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring packing, Fuel, 2014, 136, 261-267.
[27] Madeddu, C.; Errico, M.; Baratti, R. Process analysis for the carbon dioxide chemical absorption-regeneration system, J. Applied Energy, 2018, 215, 532-542.
[28] Borhani, T. N. G.; Akbari, V.; Hamid, M. K. A.; Manan, A. M. Rate-based simulation and comparison various promoters for CO2 capture in industrial DEA-promoted potassium carbonate absorption unit, J. Ind. Eng. Chem. 2015, 22, 306-316.
[29] Hemmati, A.; Farahzad, R.; Surendar, A.; Aminahmadi, B.; Validation of mass transfer and liquid holdup correlations for CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator, Process Saf. Environ. Prot. 2019, 126, 214-222.
[30] Bougie, F.; Iliuta, M. C. Analysis of regeneration of sterically hindered alkanolamines aqueous solutions with and without activator, J. Chem. Eng. Sci. 2010, 65, 4746-4750.
[31] Yu, J.; Chuang, S. S. C. The role of water in CO2 capture by amine, Ind. Eng. Chem. Res. 2017, 56, 6337- 6347.
[32] Sheng, M.; Xie, C.; Zeng, X.; Sun, B.; Zhang, L.; Chu, G. Intensification of CO2 capture using aqueous diethylenetriamine (DETA) solution from simulated flue gas in a rotating packed bed, Fuel, 2018, 234, 1518-1527.
[33] Chowdhury, F. A.; Yamada, H.; Higashii, T.; Goto, K.; Onoda, M. CO2 capture by tertiary amine absorbents: a performance comparison study, Ind. Eng. Chem. Res. 2013, 52, 8323-8331.
[34] Idem, R.; Wilson, M.; Tontiwachwuthikul, P.; Chakma, A.; Veawab. A. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant, Ind. Eng. Chem. Res. 2006, 45, 2414-2420.
[35] Oyenekan, B. A.; Rochelle, G. T. Alternative stripper configurations for CO2 capture by aqueous amines, AICHE J., 2007, 53 (12), 3144-3154.