Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests

Authors: M. Aboudalle, Le Btth, M. Sari, F. Meftah

Abstract:

In parallel with the appearance of new materials, brick masonry had and still has an essential part of the construction market today, with new technical challenges in designing bricks to meet additional requirements. Being used in structural applications, predicting the performance of clay brick masonry allows a significant cost reduction, in terms of practical experimentation. The behavior of masonry walls depends on the behavior of their elementary components, such as bricks, joints, and coatings. Therefore, it is necessary to consider it at different scales (from the scale of the intrinsic material to the real scale of the wall) and then to develop appropriate models, using numerical simulations. The work presented in this paper focuses on the mechanical characterization of the terracotta material at ambient temperature. As a result, the static Young’s modulus obtained from the flexural test shows different values in comparison with the compression test, as well as with the dynamic Young’s modulus obtained from the Impulse excitation of vibration test. Moreover, the Young's modulus varies according to the direction in which samples are extracted, where the values in the extrusion direction diverge from the ones in the orthogonal directions. Based on these results, hollow bricks can be considered as transversely isotropic bimodulus material.

Keywords: Bimodulus material, hollow clay brick, impulse excitation of vibration, transversely isotropic material, Young’s modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 396

References:


[1] S. Ahmed, and B.D. Hachmi "A Multi-Physics and Multi-Scale Approach for Hollow Clay-Brick Masonry." 2015.
[2] N. Thê-Duong, and M. Fekri. "Behavior of hollow clay brick masonry walls during fire. Part 2: 3D finite element modeling and spalling assessment." Fire Safety Journal 66 (2014): 35-45.
[3] P. B., Lourenço, G. Vasconcelos, P. Medeiros, and J. Gouveia. "Vertically perforated clay brick masonry for loadbearing and non-loadbearing masonry walls." Construction and Building Materials 24, no. 11 (2010): 2317-2330.
[4] G. Jacqus, S. Berger, G. Vincent, J. Philippe, V. Michel, and C. Sébastien. "A homogenised vibratory model for predicting the acoustic properties of hollow brick walls." Journal of Sound and Vibration 330, no. 14 (2011): 3400-3409.
[5] Z. Svoboda, and K. Marek. "Numerical simulation of heat transfer through hollow bricks in the vertical direction." Journal of Building Physics 34, no. 4 (2011): 325-350.
[6] K. Michel. Clay bricks and rooftiles, manufacturing and properties. lasim, 2007.
[7] N. The-Duong. Etude du comportement au feu des maçonneries de briques en terre cuite : Approche expérimentale et modélisation du risque d'écaillage. PhD thesis, Université Paris-Est, 2009.
[8] S. Ahmed. "Modélisations thermomécanique et numérique du comportement de maçonneries en briques alvéolées en terre cuite sous chargements mécanique et thermique sévères." PhD diss., 2018.M. Young, The Techincal Writers Handbook. Mill Valley, CA: University Science, 1989.
[9] D.B., Emmanuel, E. Blond, M. Christine, C. Thierry, N. Schmitt, and J. Poirier. "Identification du module d'Young de matériaux réfractaires à base SiC." In Matériaux 2010, p. CD. 2010.
[10] N. Makoond, P. Luca and M. Climent. "Dynamic elastic properties of brick masonry constituents." Construction and Building Materials 199 (2019): 756-770.
[11] G. Jacqus,. "Etude des caractéristiques acoustiques des matériaux alvéolaires utilisés pour la construction de parois dans le bâtiment." PhD diss., Université de Toulouse, Université Toulouse III-Paul Sabatier, 2011.
[12] D. Abdelhakim, and Z. Abdellatif. "Identification of elasticity modulus by vibratory analysis (Application to a natural composite: Aleppo pine wood)." In MATEC Web of Conferences, vol. 149, p. 01045. EDP Sciences, 2018.
[13] NF EN 1015-11. Méthodes d'essai des mortiers pour maçonnerie - Partie 11 : détermination de la résistance en flexion et en compression du mortier durci, Septembre 2000
[14] D. Zongliang, Z. Yupeng, Z. Weisheng, and G. Xu. "A new computational framework for materials with different mechanical responses in tension and compression and its applications." International Journal of Solids and Structures 100 (2016): 54-73.
[15] A. Zolochevsky, E. Yeseleva, and W. Ehlers. "An anisotropic model of damage for brittle materials with different behavior in tension and compression." Forschung im Ingenieurwesen 69, no. 3 (2005): 170-180.
[16] T. You, Z. Qi-Zhi, L. Peng-Fei, and S. Jian-Fu. "Incorporation of tension-compression asymmetry into plastic damage phase-field modeling of quasi brittle geomaterials." International Journal of Plasticity 124 (2020): 71-95.
[17] H. Eli S., A.C. José A., L. Alexis, and J.M. John. "Modeling of Bimodulus Materials with Applications to the Analysis of the Brazilian Disk Test." 2019
[18] D. Zongliang, Z. Weisheng , Z. Yupeng, X. Riye , and G. Xu. "Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression." Computational Mechanics 63, no. 2 (2019): 335-363.
[19] C. František, V. Jan, P. Matìj and B. Zita. "Determination of static moduli in fractured rocks by T-matrix model." Acta Montanistica Slovaca 22, no. 1 (2017).
[20] P.N., Laura J., and N. David D. "Frequency dependence of fracture stiffness." Geophysical Research Letters 19, no. 3 (1992): 325-328.
[21] M.H. Worthington. "Interpreting seismic anisotropy in fractured reservoirs." First Break 26, no. 7 (2008): 57-63.
[22] V. Jan, R. Vladimír, L. Tomáš, and Z. Roman. "Velocity dispersion in fractured rocks in a wide frequency range." Journal of Applied Geophysics 90 (2013): 138-146.
[23] L. Hassel. "Dynamic vs. static Young's moduli: a case study." Materials Science and Engineering: A 165, no. 1 (1993): L9-L10.
[24] P. Antonio, C. Giovanni B., F. Nicoletta, and C. Riccardo. "General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration." Engineering geology 169 (2014): 1-13.