A Review on Process Parameters of Ti/Al Dissimilar Joint Using Laser Beam Welding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32797
A Review on Process Parameters of Ti/Al Dissimilar Joint Using Laser Beam Welding

Authors: K. Kalaiselvan, K. Sekar, S. Elavarasi

Abstract:

The use of laser beam welding for joining titanium and aluminum offers more advantages compared with conventional joining processes. Dissimilar metal combination is very much needed for aircraft structural industries and research activities. The quality of a weld joint is directly influenced by the welding input parameters. The common problem that is faced by the manufactures is the control of the process parameters to obtain a good weld joint with minimal detrimental. To overcome this issue, various parameters can be preferred to obtain quality of weld joint. In this present study an overall literature review on processing parameters such as offset distance, welding speed, laser power, shielding gas and filler metals are discussed with the effects on quality weldment. Additionally, mechanical properties of welds joint are discussed. The aim of the report is to review the recent progress in the welding of dissimilar titanium (Ti) and aluminum (Al) alloys to provide a basis for follow up research.

Keywords: Laser beam welding, titanium, aluminum, process parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525

References:


[1] Gao. M, Chen. C, Gu. Y.Z, Zeng. X.Y, “Microstructure and tensile behavior of laser arc hybrid welded dissimilar Al and Ti Alloys”. Materials 2014, 7, 1590–1602.
[2] Wu. Y, Cai. Y, Wang. H, Shi. S, Hua. X, Wu. Y, “Investigation on microstructure and properties of dissimilar joint between SA553 and SUS304 made by laser welding with filler wire. Mater”. Des. 2015, 87, 67–78
[3] Rong. Y.M, Xu. J, Cao. H, Zheng. H, Huang. Y, Zhang. G, “Influence of steady magnetic field on dynamic behavior mechanism in full penetration laser beam welding”. J. Manuf. Process. 2017, 26, 399–406.
[4] Wang. P.F, Chen. X.Z, Pan. Q.H, Madigan. B, Long. J.Q, “Laser welding dissimilar materials of aluminum to steel: An overview”. Int. J. Adv. Manuf. Technol. 2016, 87, 3081–3090.
[5] Woizeschke. P, Vollertsen. F, “A strength-model for laser joined hybrid aluminum–titanium transition structures”. CIRP Annals-Manuf. Technol. 2016, 65, 241–244.
[6] Miyagi. M, Wang. H, Yoshida. R, Kawahito. Y, Kawakami. H, Shoubu. T, ‘Effect of alloy element on weld pool dynamics in laser welding of aluminum alloys’. Sci. Rep. 2018, 8, 12944
[7] Wei. S.Z, Li. Y.J, Wang. J, Liu. K, “Improving of interfacial microstructure of Ti/Al joint during GTA welding by adopting pulsed current”. Int. J. Adv. Manuf. Technol. 2014, 73, 1307–1312.
[8] Rajakumar. S, Balasubramanian. V, “Diffusion bonding of titanium and AA7075 aluminum alloy dissimilar joints-process modeling and optimization using desirability approach”. Int. J. Adv. Manuf. Technol. 2016, 86, 1095–1112.
[9] Karpov. M.I, Korzhov. V.P, Zheltyakova. I.S, “Layer structure of a refractory multilayer Ti/Al composite after pressure diffusion welding”. Met. Sci. Heat Treat. 2016, 58, 3–6.
[10] Plaine. A.H, Suhuddin. U.F.H, Afonso. C.R.M, Alcantara. N.G, Dos Santos. J.F, “Interface formation and properties of friction spot welded joints of AA5754 and Ti6Al4V alloys”. Mater. Des. 2016, 93, 224–231.
[11] Huang. Y.X, Lv. Z.L, Wan. L, Shen. J.J, Dos Santos. J.F, “A new method of hybrid friction stir welding assisted by friction surfacing for joining dissimilar Ti/Al alloy”. Mater. Lett. 2017, 207, 172–175
[12] Song. Z, Nakata K, Wu. A, Liao. J, Zhou. L, “Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys”. Mater. Des. 2014, 57, 269–278
[13] Li. B, Zhang. Z, Shen. Y, Hu. W, Luo. L, “Dissimilar friction stir welding of Ti–6Al–4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties”. Mater. Des. 2014, 53, 838–848.
[14] Fan. M.Y, Yu. W, Wang. W, Guo. X, Jin. K, Miao. R, Hou. W, Kim. N, Tao. J, “Microstructure and mechanical properties of thin-multilayer Ti/Al laminates prepared by one-step explosive bonding”. J. Mater. Eng. Perform. 2017, 26, 1–8.
[15] Xia. H.B, Wang. S.G, Ben. H.F, “Microstructure and mechanical properties of Ti/Al explosive cladding”. Mater. Des. 2014, 56, 1014–1019.
[16] Bazarnik. P, Adamczyk-Cie´slak. B, Gałka. A, Płonka. B, Sniezek. L, Cantoni. M, Lewandowska. M, “Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding”. Mater. Des. 2016, 111, 146–157.
[17] Mohammadpour. M, Yazdian. N, Yang. G, Wang. H.P, Carlson. B, Kovacevic. R, “Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel”. Opt. Laser Technol. 2018, 98, 214–228.
[18] Zhihua Song, Kazuhiro Nakata, Aiping Wub & Jinsun Liaod 2013, “Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove”, Materials Science and Engineering: A, vol. 560-10, pp. 111–120.
[19] Felix Moller, Claus Thomy& Frank Vollertsen 2012, “Joining of Titanium-Aluminium Seat Tracks for Aircraft Applications - System Technology and Joint Properties”, Welding in the World, vol. 56, Issue 3, pp. 108-114.
[20] Oliveira, AC, Riva, R &Athanazio, NMA 2015, “Yb:Fiber laser joining of Ti-6Al-4V and AA6013 dissimilar metals”, Lasers in Manufacturing Conference.
[21] Giuseppe Casalino, Michelangelo Mortello& Patrice Peyre 2015, “Yb–YAG laser offset welding of AA5754 and T40 butt joint”, Journal of Materials Processing Technology, vol. 223, pp. 139-149.
[22] Casalino. G, D’Ostuni. S, Guglielmi. P, Leo. P, Mortello. M, Palumbo. G, Piccininni. A, “Mechanical and microstructure analysis of AA6061 and Ti6Al4V fiber laser butt weld”. Optik2017, 148, 151–156.
[23] Chen. S.H, Yang. D, Li. M, Zhang. Y, Huang. J, Yang. J, Zhao. X, “Laser penetration welding of an overlap titanium-on-aluminum configuration”. Int. J. Adv. Manuf. Technol. 2016, 87, 3069–3079.
[24] Tomashchuk, I, Sallamand, P, Cicala, E, Peyre, P &Grevey, D 2015, “Direct keyhole laser welding of aluminum alloy AA5754 to titanium alloy Ti6Al4V”, Journal of Materials Processing Technology, vol. 217, pp. 96-104.
[25] Xi Chen, Zhenglong Lei , Yanbin Chen, Yu Han, Meng Jiang, Ze Tian, Jiang Bi, Sanbao Lin and Nan Jiang, 2019, Effect of Laser Beam Oscillation on Laser Welding–Brazing of Ti/Al Dissimilar Metals, Materials 2019, 12, 4165.
[26] Giuseppe casalino, Michelangelo Mortello, Patrice Peyre, 2015, ‘ Yb–YAG laser offset welding of AA5754 and T40 butt joint - Journal of Materials Processing Technology - Vol. 223, p.139–149.
[27] Michael Kreimeyer, Florian Wagner & Frank Vollertsen 2005, “Laser processing of aluminum–titanium-tailored blanks”, Optics and Lasers in Engineering, vol. 43, Issue 9, pp. 1021–1035.
[28] Shehab, AA, Mahmoud, K, Sadrnezhaad, SK, Torkamany, MJ &Jawad, SA 2015, “Pulsed Nd:YAG Laser Dissimilar Welding of Grade 2 Titanium Alloy to 3105-O Aluminum Alloy using AlSi5 Filler Metal”, International Journal of Enhanced Research in Science Technology & Engineering, vol. 4 Issue 4,pp. 243-252.
[29] Lee, Su-Jin, Nakamura, Hiroshi, Kawahito, Yousuke, Katayama & Seiji 2013, “Weldability of Ti and Al Dissimilar Metals Using Single-Mode Fiber Laser”, Journal of Laser Micro Nano Engineering, vol. 8.2, pp. 149-154.
[30] Kah, P, Suoranta, R &Martikainen, J 2011, “Joining of Sheet Metals Using Different Welding Processes”, Proceedings of 16th International Conference. Mechanika. DOI: 10.13140/2.1.3298.1284.
[31] Tu, JF &Paleocrassas, AG 2011, “Fatigue crack fusion in thin-sheet aluminum alloys AA7075-T6 using low-speed fibre laser welding”, Journal of Materials Processing Technology, vol. 211, pp. 95-102.
[32] Sujin Lee, Seiji Katayama & Jong-Do Kim 2014, “Microstructural behaviour on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser”, Journal of the Korean Society of Marine Engineering, vol. 38, no. 2 pp. 133-139.
[33] Lee, Sujin, Nakamura, Hiroshi, KawahitoYousuke& Katayama Seji 2013, “Microstructural Characteristics and Mechanical Properties of Single-Mode Fiber Laser Lap-Welded Joint in Ti and Al Dissimilar Metals”, Transactions of JWRI, vol. 42, no. 1, pp. 17-21.
[34] Tadamalle, AP, Reddy, YP &Ramjee, E 2013, ‘Influence of laser welding process parameters on weld pool geometry and duty cycle’, Advances in Production Engineering and Management, vol. 8, pp. 52-60.
[35] Gerhard Liedl, Alexander Kratky, Matthias Mayr& Alexandra Saliger 2011, “Laser assisted joining of dissimilar materials’, IQCMEA-ICF-Processing”, Performance and Failure Analysis of Engineering Materials, pp. 14-17.
[36] Xiongfeng Zhou, Ji’an Duan, Fan Zhang, Shunshun Zhong, 2019, “The Study on Mechanical Strength of Titanium-Aluminum Dissimilar Butt Joints by Laser Welding-Brazing Process”, Materials, 12, 712, pp1-16.
[37] Ming Gao, Cong Chen, Yunze Gu, Xiaoyan Zeng, 2014, “Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys’, Materials, 7, 1590-1602.
[38] Shuhai Chen, Liqun Li, Yanbin Chen, Jingmin Dai &Jihua Huang 2011, “Improving interfacial reaction nonhomogeneity during laser welding-brazing aluminum to titanium”, Materials & Design vol. 32, Issues 8-9, pp. 4408-4416.
[39] Majumda. B, Galun. R, Weisheit. A, Mordike. B, 1997, ‘Formation of a crack-free joint between Ti alloy and Al alloy by using a high-power CO2 laser’, Journal of materials science. 32, 6191 – 6200.
[40] Seretsky. J, Ryba. ER, 1976, ‘Laser Welding of Dissimilar Metals: Titanium to Nickel’ Welding Journal, 55(7), 1976, Welding Research Supplement 208-s.
[41] Liu. PS, Baeslack. WA, Hurley.J, 1994, ‘Dissimilar alloy laser beam welding of titanium: Ti-6Al-4V to beta-CTM’. Welding Journal, 73(7), Welding Research Supplement 175-s.
[42] C. Dawes, 1992, ‘Laser welding—a practical guide’ Abington Publishing, Cambridge. Doi- 10.1533/9781845698843.
[43] Massalski. TB, 1986, ‘Binary alloy phase diagrams’ American Society for Metals, Metals Park, OH.
[44] Teresa Sibillano, Antonio Ancona, Vincenzo Berardi, Emanuel Schingaro, Giuseppe Basile, &Pietro Mario Lugar 2006, “A study of the shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation”, Optics and Lasers in Engineering, vol. 44, Issue 10, pp. 1039-1051.
[45] Ancon, A, Sibillano, T, Tricarico, L, Spina, R, Lugara, P.M, Basile, G &Schiavone, S 2005, “Comparison of two different nozzles for laser beam welding of AA5083 aluminium alloy”, Journal of Materials Processing Technology, vol. 164-165, 15, pp. 971-977.
[46] Schultza, V, Seefelda. T, Vollertsena, F 2014, “Gap bridging ability in laser beam welding of thin aluminum sheets”, Physics Procedia, vol. 56, pp. 545-553.
[47] Z.Sun, JC. Ion, 1995, “Review-Laser welding of dissimilar metal combinations”, Journal of Materials Science, V.30, PP.4205-4214.
[48] Yanbin Chen, Shuhai Chen, Liqun Li, 2008, “Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spot laser welding-brazing method”, International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-008-1837-2.
[49] Tomashchuk. I, Sallamand. P, Méasson. A, Cicala. E, Duband. M, Peyre. P, 2017, “Aluminum to titanium laser welding-brazing in V-shaped groove”. J. Mater. Process. Technol., 245, 24–36.
[50] Peyre. P, Berthe. L, Dal. M, Pouzet. S, Sallamand. P, Tomashchuk. I, 2014, “Generation and characterization of T40/A5754 interfaces with lasers”. J. Mater. Process. Technol, 214, 1946–1953.
[51] Sahul. M, Sahul. M, Vyskoc. M, Caplovic. L, Pasak. M, 2017, “Disk laser weld brazing of AW5083 aluminum alloy with titanium grade 2”. J. Mater. Eng. Perform, 26, 1346–1357.