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Abstract—Malaria is a serious disease which affects hundreds of
millions of people around the world, each year. If not treated in time,
it can be fatal. Despite recent developments in malaria diagnostics,
the microscopy method to detect malaria remains the most common.
Unfortunately, the accuracy of microscopic diagnostics is dependent
on the skill of the microscopist and limits the throughput of malaria
diagnosis. With the development of Artificial Intelligence tools and
Deep Learning techniques in particular, it is possible to lower the cost,
while achieving an overall higher accuracy. In this paper, we present a
VGG-based model and compare it with previously developed models
for identifying infected cells. Our model surpasses most previously
developed models in a range of the accuracy metrics. The model has
an advantage of being constructed from a relatively small number of
layers. This reduces the computer resources and computational time.
Moreover, we test our model on two types of datasets and argue
that the currently developed deep-learning-based methods cannot
efficiently distinguish between infected and contaminated cells. A
more precise study of suspicious regions is required.

Keywords—Malaria, deep learning, DL, convolution neural
network, CNN, thin blood smears.

I. INTRODUCTION

MALARIA is a severe disease transmitted by mosquitoes.

If not treated in time it can be fatal. According to

the World Health Organisation (WHO) [1], in 2018 alone,

there were 200 million diagnosed malaria cases worldwide,

with the total amount of deaths being over 400,000. The

WHO African Region is affected particularly badly, carrying

93% of malaria cases and 94% of malaria deaths. Children

under 5 years are the most vulnerable. According to the most

recent studies WHO suggests that due to the COVID-19 issue,

malaria cases could be doubled in the oncoming year. This

makes the investment in malaria research even more critical.

Three of the main methods for diagnosing malaria are

microscopy, a rapid diagnostic test (RDT), and Polymerase

chain reaction (PCR) (see [2]). Unfortunately, both RDT and

PCR, have limitations (see [3], [4]). According to WHO

microscopy is the most common tool for diagnosing malaria,

though the accuracy can be poor. For example in [5], it is

shown that while sensitivity is 99%, specificity is only 57%.

Recent advances in Artificial Intelligence (AI) allow to

analyse samples more accurately and faster than a human

eye would do. For example, in [6] a machine learning (ML)

technique is suggested, which allows the overall accuracy to
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be ≥ 90%. In this study, we focus on microscope diagnostics,

as it is the most common and cheap method.

ML methods, and Deep Learning (DL) in particular, are

extensively used in medical image classifications (see [7],

[8]). DL techniques have started to get integrated into medical

equipment (see examples in [9] for identification of cancer

cells and in [10]).

Usually, the methods include either segmentation tasks,

feature extraction, or a combination of both of them. For

example, in [10] a popular U-Net method was applied for cells

segmentation. In [11] convolutional neural networks (CNN),

such as ResNet and VGG16 were applied to mammograms

and compared. In [12] a hybrid approach of segmentation and

feature extraction was developed to identify breast cancer in

mammograms.

Similar DL approaches are used to identify malaria parasites

in blood cells from microscopy images. Two types of

microscopy images are widely used for this purpose: thin

blood smear images and thick blood smear images. Thick

smears represent a thick layer of red blood cells and, therefore

have a higher density of parasites. This makes thick smears

particularly efficient for identifying the presence of malaria

parasites in blood cells. Thin smears represent a thin layer of

blood. They are normally used by clinicians to identify stages
of malaria. The accuracy of detection in both tests depends on

the quality of smears and level of human expertise [13]. It has

been shown, however, that both thin and thick smears can be

efficiently used to detect malaria by DL-based methods. For

example, in [14]-[16] it is demonstrated that Convolutional

Neural Network (CNN) based models can successfully extract

features from thin smears towards classification of parasitised

and uninfected cells. The development by [17] presented an

ensemble model working with high accuracy on the same thin

smears database. In [18] an autoencoder based model has been

presented. Examples of the successful application of DL-based

models to thick smear databases can be found in [19] and [20].

In this work we present a deep-learning based model to

help malaria diagnostics. The model is based on a VGG-type

customised neural network. Prior to the training process, extra

work has been done on the image dataset. The details of these

stages are discussed in Sections II and III-C. The model has

been tested on two types of dataset (see Table I). Accuracy

has been evaluated through a cross-validation strategy, both

at patient and cell levels. Various accuracy metrics have been

calculated and compared with a set of similar studies (see V).

The model also has been profiled with VGG-16 and VGG-19

networks. Based on the experimental results we argue that

a greater number of layers does not necessarily improve the
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accuracy, if applied to thin smear images.

The tests prove that the model presented can be successfully

used for detecting malaria from thin blood smear test images

giving an accuracy of parasite identification up to 99.3%.

Using standard accuracy metrics, it surpasses or is comparable

to previous studies (see Table V). Moreover, by testing the

model on two types of dataset we show the limitations of

the currently developed DL-based model. The limitations

and further plans for model improvements are discussed in

Section V.

II. DATA

For the current study we used images of Giemsa-stained

thin blood smear slides which have been collected from

150 P. falciparum infected and 50 healthy patients at

Chittagong Medical College Hospital, Bangladesh. The data

were automatically segmented and manually annotated by an

expert at the Mahidol-Oxford Tropical Medicine Research

Unit in Bangkok, Thailand. They have later been published

by the National Library of Medicine (NLM) and can be found

in [21]. Cells containing plasmodium parasites are identified

as positive (parasitised). Cells not containing plasmodium are

identified as uninfected. Fig. 1 shows malaria cells from each

class. In this study we label this type of dataset as A.

When developing and testing DL-based models we noticed

that a relatively large proportion of the data are mislabeled.

The data were, therefore, relabeled by one author. As a

result 5 folders were produced: 1) a folder with images

containing parasites (labeled “parasitised”); 2) a folder with

uninfected images (labeled “uninfected”); a folder also

includes uninfected images with impurities (see examples

of such images in Fig. 1); 3) a folder with the images

the expert was not sure about; 4) a folder with very badly

segmented images; 5) a folder with “strange” images; the

images with some artefacts of unknown origin. Only the

folders “parasitised” and “uninfected” were used for this

study. This reduced the number of “true parasitised” images

to 12,058 and increased the number of “true uninfected” to

14,142 (if compared with the original dataset A). In this

research we label this dataset B. The corresponding folders

with the re-labeled images can be found in [22].

We also tested our model on the dataset obtained by [18]

(labeled C). The authors of [18] have also noticed that the

images in the original dataset [21] are mislabeled. The updated

thin smears dataset can be found in [23]. Note, that the dataset

originally published in [21] contains 27,558 cell images,

from which 13,779 images are labelled as “parasitised” and

13,779 as “uninfected”. After the cleaning process proposed in

[18] the folders “true parasitised” and “true uninfected” were

generated. The images with uninfected cells, but containing

impurities or colouring have been removed from the study (see

examples in Fig. 1). This reduced the number of “uninfected”

images from 13,131 to 13,028. The procedure described makes

the dataset “perfect” and does not allow a deep learning model

to “learn” the difference between impurities and parasites.

However, using this dataset for training and comparing with

the results of training on dataset A is very important part of the

study. It gives a better insight in the properties of the current

deep learning model and shows its limitations.

In the this work we compare the accuracy of our model

with previous studies. Since the accuracy of a deep learning

model is affected by the dataset used for training/testing, we

list here the datasets used in the comparative studies:

D. The dataset uploaded in Kaggle (see [24]). The dataset

looks very similar to [21] and is likely to be the same.

It has been used for deep learning modelling in [15].

E. The digital images from the open source MaMic Image

Database from the Institute for Molecular Medicine

Finland (FIMM) [25]. They were used in [20] along

with a combination of blood smear samples collected

locally.

F. Thick blood smear images collected by Chittagong

Medical College Hospital, Bangladesh and manually

annotated by an expert at the Mahidol-Oxford Tropical

Medicine Research Unit in Bangkok, Thailand. The

dataset can be found in [21]. It has been used in [19].

List of the datasets is presented in Table I

Fig. 1 Examples of (a) parasitised cell; (b) uninfected cell; (c) uninfected
cells, containing impurities and artefacts

III. MATERIALS AND METHODS

A. Cross-Validation Studies

Cross-validation studies are helpful in keeping the model

from overfitting. This is because bias is removed from the

training data. Variance is also significantly removed as most

of the data is used in validation data as well [26]. Instead of

splitting the data into training and testing, the data are split

into groups. All groups but one are selected for training, and

the remaining group is selected for testing. With each separate

iteration, all groups are subsequently selected for testing one

by one, which helps in reducing overfitting. For the model,

the images were resized to 128×128 as input to train the

CNN model. The dataset models were evaluated through the

k fold cross-validation technique, with the number of folds

being 5. Cross-validation has been performed at a patient level.

We believe that this represents the most realistic evaluation

of the method performance. This allows testing of how the

model works on patients unknown for the trained system. The

accuracy metrics are presented in Table V. To compare with
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TABLE I
SUMMARY OF MALARIA DATASETS USED FOR DEEP LEARNING MODELS

Label Source Type Comment

A National Library
of Medicine [21]

thin Contains a number of
mislabeled images;

B Google drive[22] thin Thin smears from [21]
have been re-labeled
and cleaned; uninfected
images with impurities
are used in the study;
tested on the proposed
model;

C Google drive [23] thin Thin smears from [21]
have been re-labeled
and cleaned; uninfected
images with impurities
removed from the study;
tested on the proposed
model;

D Kaggle [24] thin The dataset is likely to be
taken from [21];

E Institute for
Molecular
Medicine [25]

thick Tagore Medical College &
Hospital blood smears +
Mamic dataset;

F National Library
of Medicine [21]

thick —

[15] and [14] we have also used the train-test split method

with a 80:20 split for means of comparison of results. The

datasets B and C prepared for 5 folds cross-validation study

(at a patient level) can be found in [27].

The model was created and trained on an Ubuntu 18.04

system with Intel Core i5-9300H CPU @2.40GHz processor,

16 GB RAM, a CUDA enabled NVIDIA GeForce GTX 1660

Ti GPU with 6 GB memory. Python 3.8.6 with Keras 2.1.1 and

Tensorflow 2.0.0 backend and CUDA 10.0 with cuDNN 7.1

library, used on Jupyter Notebook version 6.0.3.

B. Preprocessing

The images were resized to 128×128 size, with a RGB

scale, as input to train the customised VGG8-based model

(see Table II). When working on pretrained models they were

resized to 224×224 as required. While resizing, as a part of the

pre-processing step, only RGB channel images were allowed.

The relabeled dataset contains 14141 infected and 12057 (for

the dataset B) uninfected samples while doing the train:test

split. By using Kerass ImageDataGenerator, data augmentation

was done to increase generalizations in the dataset and to

reduce overfitting. Data augmentation is a way of creating

new data from the existing dataset with some changes. Data

augmentation is useful for increasing the size of the dataset

and introducing heterogeneity, thus having more images to

work with [28]. It also helps in reducing overfitting, since

there is an inclusion of lots of randomness in the dataset.

Some of the data augmentation techniques used were rotation,

shearing, zooming, horizontal flips, featurewise normalization,

width and height shifts. By introducing shifts and rotations,

we increased the degree of heterogeneity in the data. After

splitting, preprocessing and augmentation, the training data

contained 22,046 images per class and testing data contained

5512 images. Table II shows the structure of the proposed

model.

C. Model Description

The VGG type of neural network was first proposed by

[29]. The main difference from the suggested earlier AlexNet

is that AlexNet uses larger convolutional filters (11×11). The

authors used small convolution filters (3×3 and 1×1); they

also experimented with the number of layers and concluded

that deeper structures can benefit classification accuracy. This

type of deep neural network is recognised as efficient for

image classification and is widely used in the ML community.

We therefore chose VGG-based NN for our experiments.

The summary of the networks used for experiments is

shown in Table II. Network VGG8 is a customized networks

(highlight in bold).

TABLE II
VGG-BASED CONFIGURATIONS

VGG8 VGG16 VGG19

Input 128×128×3

conv3-64 conv3-64 conv3-64

conv3-64 conv3-64 conv3-64

maxpool

conv3-128 conv3-128 conv3-128

conv3-128 conv3-128 conv3-128

maxpool

conv3-256 conv3-256 conv3-256

conv3-256 conv3-256 conv3-256

conv3-256 conv3-256

conv3-256

maxpool

conv3-512 conv3-512

conv3-512 conv3-512

conv3-512 conv3-512

conv3-512

maxpool

conv3-512 conv3-512

conv3-512 conv3-512

conv3-512 conv3-512

conv3-512

maxpool

FC-256 FC-4096

FC-256 FC-4096

FC-1024

Customised VGG8 CNN has six convolutional layers with

two fully connected dense layers. The convolutional layers use

a 1-pixel stride, with 3×3 filters. The first two convolution

layers have input images of 128×128×3 size and BGR

channel. The first two convolution layers use 64 filters, the

third and fourth convolution layers use 128 filters, the fifth

and sixth convolution layers use 256 filters (see Table II).

Each convolution layer uses batch normalization. Using

batch normalization standardizes the activations of each input

variable per mini-batch, such as the activations of a node from

the previous layer. Batch normalization is used to suppress
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communication between mean and variance, allowing each

layer to train separately, independently of the previous layers

[30]. Using moving averages instead of taking snapshots at

particular moments allows for keeping track of accuracy while

the model trains. Batch normalisation which is applied is given

by

x̂k
i =

xk
i − E[x]k√
Var[x]k + ε

, k ∈ [1, d], i ∈ [1,m] (1)

where d is a dimension of an input layer x = (x1, x2, . . . xn),
m is a number of Batches, E[x]k is a Batch mean.

E[x]k =
1

m

m∑
i=1

xk
i (2)

and Var[x]k is a Batch variance as seen in [31] is

Var[x]k =
1

m

m∑
i=1

(xk
i − E[x]k)2. (3)

In this research, we developed a deep learning model

with Leaky ReLU as an activation function. Leaky ReLU

is a customized version of parametric ReLU [32]. Leaky

ReLU introduces a small slope for negative values, instead of

making the slope zero, as normal ReLU does. Normal ReLU

sometimes dies on finding a local minimum, LeakyReLU

fixes this dying ReLU problem. In Leaky ReLU the alpha

parameter denotes the negative slope coefficient. With lower

values in the Fischer Information Matrix diagonal, as seen

in [33], LeakyReLU also speeds up training. LeakyReLU

also stabilizes training, with slope oscillations generally lying

between the optimal and near optimal states as seen in Fig. 3.

Leaky ReLU is defined by:

f(x) =

{
α · x, for x < 0,
x, for x ≥ 0.

(4)

The value of α used is 0.1.

The output of the second convolutional layer was fed into

the first pooling with dropout layer. The pooling layers have a

2×2 pooling window and summarize the convolutional output

of neighbouring neuron groups in the feature maps by taking

the maximum value from the 2×2 matrix. 20% of the neurons

after the Max-Pooling layer output were randomly selected

and dropped from the next weight update cycle in the Dropout

layer to prevent overfitting.

The max-pooling layer was followed by two instances of

two more convolution layers and max-pooling with dropout.

The last max-pooling with dropout layer was further connected

to the first fully connected dense layer. After converting the

network matrix to a vector, a dense layer with all connected

classes consisting of 256 neurons was created. Again, Batch

normalization was used at this layer. The activation function

used in this layer was also LeakyReLU with an alpha of 0.1.

30% of the nodes were dropped from the next weight update

cycle as a part of optimization towards reducing overfitting.

Immediately connected to this was the second fully connected

dense layer. It used the same functions as the first fully

connected dense layer, sans the flattening operation. This was

connected to the final dense layer. At this layer, the activation

function used was sigmoid. The sigmoid function is used for

binary classifications. The sigmoid function is defined as

f(x) =
1

(1 + e−x)
. (5)

The architecture used for building the CNN led to a total

of 17,994,561 parameters, out of which 17,991,745 were

trainable and 2,816 were non-trainable. The architecture is

presented in Fig. II.

D. Feature Extraction and Optimization

Since it is a binary classification problem, we used the

binary cross-entropy function [34]. It is given by the formula

Hp(q) = − 1

N

N∑
i=1

yi ·log(p(yi))+(1−yi)·log(1−p(yi)), (6)

where y is the label (parasitized or uninfected). p(y) is the

probability for the point being parasitised for all N points

[35].

The adaptive learning rate optimization algorithm used was

Adam with a learning rate of 0.001. Adam is a combination

of two optimization algorithms– RMS prop and Stochastic

Gradient descent with momentum. It scales the learning rate

by using squared gradients. Instead of using the gradient

snapshots, Adam uses a moving average of the momentum

of the gradient. Adam is an adaptive learning rate optimizer

and uses the estimations of the first and second moments of

the gradient or loss to adapt the learning rate for each weight

of the network for subsequent updates [36].

To speed up training, callbacks like ModelChekpoint,

EarlyStopping, ReduceLROnPlateau were used [37]. Model

Checkpoint monitors the validation loss and saves only the

best model to decrease the memory load on disk. With a

minimum change in the validation loss of 0.01 to qualify as

an improvement, and patience (epochs without improvements

in accuracy) of 15 epochs, the best weights were restored the

subsequent weight updates. This helped speed up training a lot

since the model only trained with the best weights possible.

After the validation loss stopped reducing for 20 epochs, the

training was stopped. To avoid the problem of local minima,

the learning rate was reduced by a factor of 0.01 when the loss

did not drop for 20 consecutive epochs (or reached a plateau).

This reduced learning gave the optimizer time to find alternate

paths towards the minima.

The images were divided into batches of size 32 [38]

for each epoch. The model was then allowed to train for a

theoretical 100 epochs. We evaluated the model against the

already existing VGG16 and VGG19, along with the existing

literature. The metrics of evaluation used were training and

validation accuracy, precision, recall, F1 score and specificity.

Fig. 3 shows Accuracy and Loss plotted against epochs.

IV. RESULTS

A. Performance Evaluation

The final model was evaluated against existing literature

with the metrics- cross-validation accuracy, precision, F1
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Fig. 2 Architecture of the customised VGG-based Neural Network

Fig. 3 (a) Accuracy vs epochs; (b) loss and accuracy vs Epochs

score, sensitivity and specificity, after tuning the hyper

parameters and optimisation tools. All the metrics are

explained in brief, along with the results obtained. Let us

define the following metrics:

• True positive (TP): the number of cells with parasites

identified correctly.

• True negative (TN): the number of uninfected cells

identified correctly.

• False positive (FP): the number of uninfected cells

wrongly classified as infected.

• False negative (FN): the number of cells with parasites

wrongly classified as uninfected.

Accuracy is a metric which can be calculated according to

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Precision is a measure used to determine how many correct

malarial classes are predicted [39]. Precision is defined by

Precision =
TP

TP + FP
. (8)

Recall (or sensitivity) is a measure of total malarial classes

correctly classified by the model [39]. It is also referred to as

true positive rate [40], [41]. Recall is defined by

Recall =
TP

TP + FN
. (9)
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F1-score gives a statistical measure of the accuracy of the

predictions by the model. F1 score is given by

F1− score = 2 · Precision · Recall
Precision + Recall

. (10)

Specificity is the measure of the proportion of uninfected

predicted classes which are actually uninfected. Specificity is

also referred to as true negative rate [40], [41]. Specificity is

given by

Specificity =
TN

TN + FP
. (11)

The confusion matrix is also presented in Table III for

[42].

TABLE III
CONFUSION MATRIX

Predicted No Predicted Yes

Actual No 2746 57

Actual Yes 36 2401

Table V gives a comparison of results for the existing

and most recent cross-validated studies, including the model

presented in this work and dataset C (bold text indicates best

performing models).

V. DISCUSSION

Our model is a VGG-based model. VGG19 is too complex

for the task, a simplified version works better in this

application, and also avoids overfitting. VGG16 also performs

worse in changing brightness-levels of different images (as

seen in [43]). Only 6 convolution layers were used instead of

the 13 convolution layers used by [29]. It is worth mentioning

that the smaller input for VGG16 and VGG19 improves the

accuracy metrics. Since the smaller images are derived from

the larger images by interpolation, this proves that the type of

dataset used in this research does not require very deep neural

networks which are designed to grasp small features of images.

Most of the images can be classified by a singularity point,

representing an impurity or a parasite. Therefore, more shallow

networks are more suitable for this type of classification.

In [44] it is demonstrated that a deeper neural network

demands more computational resources: more memory and

more computational time. They, therefore, demand more

powerful and more expensive graphics cards. In this work

we show that a very high accuracy can be achieved even if

trained on a more shallow customised neural network than

an ensemble model, which includes VGG19 and VGG16

suggested in [17]. Moreover, this work shows that our model

outperforms the latest work [18] in accuracy and specificity

on “perfect” dataset C. When tested on a closer to real-life

dataset B our model still outperforms [18] in precision and

has comparable values in accuracy and specificity.

We tested the algorithm on datasets B and C. As

discussed earlier, both datasets derived from [21] were images

double-checked by malaria experts; wrongly labelled images

were relabeled. The main difference between datasets B and C
is that dataset B keeps uninfected images with impurities for

TABLE IV
K FOLD CROSS VALIDATION RESULTS

Fold Parasitized Samples Uninfected Samples Accuracy

1 2633 2634 97.90

2 2647 2646 97.85

3 2559 2559 97.91

4 2638 2638 98.59

5 2626 2626 98.38

study, while dataset C has removed many them. The purpose

of keeping the images with impurities is to test how the

deep learning model works in the conditions close to real-life.

Despite keeping the images with impurirites, Table IV shows

that the accuracy on patient level data remains consistent,

however, Table V shows that the accuracy dropped compared

to the one achieved when training and testing on the “perfect”

dataset C. Based on this we argue that the learning model may

struggle distinguishing between parasites and impurities. More

sophisticated models, possibly including feature extraction

from regions of interest (suspicious regions) are required.

Our model achieves an accuracy comparable with [17] on

dataset C.

VI. CONCLUSION

Our work shows that the deep learning can be efficiently

used to detect malaria parasites on thin blood smears. We

have presented a high accuracy DL-based model and tested

it on two datasets. The proposed model outperforms or is

comparable with the earlier studies. We demonstrated that to

achieve a high accuracy one does not have to use very deep

neural networks and more shallow versions maybe preferable.

We have relabeled wrongly classified images in the dataset

[21]. By testing on two different datasets we have confirmed

the limitations of the model. More work need to be done to

build a deep learning model which would be able to distinguish

between true parasites, impurities and artefacts in the way a

human expert would do. However, the model presented allows

identification most of cases correctly. It can be treated as the

first AI-based step which is able to detect if a blood cell is
highly likely to contain a parasite, faster and more accurately

than manual testing. More detailed analysis of a suspicious

region, either by an expert or by a new deep learning method,

is required.
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