An Overview on Aluminum Matrix Composites: Liquid State Processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
An Overview on Aluminum Matrix Composites: Liquid State Processing

Authors: S. P. Jordan, G. Christian, S. P. Jeffs

Abstract:

Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods.

Keywords: Aluminum matrix composites, light-weighting, hybrid squeeze casting, strategically placed reinforcements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658

References:


[1] G. R. Cappleman, J. F. Watts, and T. W. Clyne, “The interface region in squeeze-infiltrated composites containing δ-alumina fibre in an aluminium matrix,” J. Mater. Sci., vol. 20, no. 6, pp. 2159–2168, 1985, doi: 10.1007/BF01112300.
[2] C. Bulei, M. P. Todor, and I. Kiss, “Metal matrix composites processing techniques using recycled aluminium alloy,” IOP Conf. Ser. Mater. Sci. Eng., vol. 393, no. 1, 2018, doi: 10.1088/1757-899X/393/1/012089.
[3] A. Taub, E. De Moor, A. Luo, D. K. Matlock, J. G. Speer, and U. Vaidya, “Materials for Automotive Lightweighting,” Annu. Rev. Mater. Res., vol. 49, pp. 327–359, 2019, doi: 10.1146/annurev-matsci-070218-010134.
[4] A. A. Gokhale, N. Eswara, P. Biswajit, and B. Editors, Light Weighting for Defense, Aerospace, and Transportation. 2019.
[5] A. J. Timmis et al., “Environmental impact assessment of aviation emission reduction through the implementation of composite materials,” Int. J. Life Cycle Assess., vol. 20, no. 2, pp. 233–243, 2015, doi: 10.1007/s11367-014-0824-0.
[6] “CORSIA directive.” (Online) Available: www.ec.europa.eu/clima/policies/transport/aviation_en.
[7] J. Larsson, A. Elofsson, T. Sterner, and J. Åkerman, “International and national climate policies for aviation: a review,” Clim. Policy, vol. 19, no. 6, pp. 787–799, 2019, doi: 10.1080/14693062.2018.1562871.
[8] A. K. Sharma, R. Bhandari, A. Aherwar, R. Rimašauskiene, and C. Pinca-Bretotean, “A study of advancement in application opportunities of aluminum metal matrix composites,” Mater. Today Proc., vol. 26, pp. 2419–2424, 2020, doi: 10.1016/j.matpr.2020.02.516.
[9] T. S. Srivatsan, I. A. Ibrahim, F. A. Mohamed, and E. J. Lavernia, “Processing techniques for particulate-reinforced metal aluminium matrix composites,” J. Mater. Sci., vol. 26, no. 22, pp. 5965–5978, 1991, doi: 10.1007/BF01113872.
[10] T. Aized and B. Shirinzadeh, “Robotic fiber placement process analysis and optimization using response surface method,” Int. J. Adv. Manuf. Technol., vol. 55, no. 1–4, pp. 393–404, 2011, doi: 10.1007/s00170-010-3028-1.
[11] J.Paulo Davim, Metal Matrix Composites. 2017.
[12] B. Cantor, F. Dunne, and I. Stone, “Metal and ceramic matrix composites,” Met. Ceram. Matrix Compos., pp. 1–417, 2003, doi: 10.1533/9781845698560.305.
[13] P. S. Sahu and R. Banchhor, “Fabrication methods used to prepare Al metal matrix composites- A review,” Int. Res. J. Eng. Technol., vol. 03, no. 10, pp. 123–132, 2016.
[14] K. Naplocha and K. Granat, “The structure and properties of hybrid preforms for composites,” vol. 22, no. 2, pp. 35–38, 2007.
[15] A. M. M. Aliofkhazraei, Handbook of materials failure and analysis with case studies from the Aerospace and Automotive Industries. Elsevier Ltd., 2016.
[16] K. A. El-Aziz, D. Saber, and H. E. D. M. Sallam, “Wear and Corrosion Behavior of Al–Si Matrix Composite Reinforced with Alumina,” J. Bio- Tribo-Corrosion, vol. 1, no. 1, pp. 1–10, 2015, doi: 10.1007/s40735-014-0005-5.
[17] B. Group, “Aluminium surface treatments guide.” (Online)Available: www.bwcgroup.co.uk/news/aluminium-surface-treatments-guide. (Accessed: 07-Dec-2020).
[18] M. De Giovanni, J. M. Warnett, M. A. Williams, N. Haribabu, and P. Srirangam, “X-ray tomography investigation of intensive sheared Al-SiC metal matrix composites,” Mater. Charact., vol. 110, pp. 258–263, 2015, doi: 10.1016/j.matchar.2015.11.003.
[19] R. N. Yancey and G. Y. Baaklini, “Computed tomography evaluation of metal-matrix composites for aeropropulsion engine applications,” ASME 1993 Int. Gas Turbine Aeroengine Congr. Expo. GT 1993, vol. 2, 1993, doi: 10.1115/93-GT-004.
[20] R. Moona, Girija;Walia , R.S; Rastogi, Vikas;Sharma, “Aluminium metal matrix composites: A retrospective investigation,” Indian J. pure Appl. Phys., vol. 56, pp. 164–175, 2018.
[21] S. T. Mavhungu, E. T. Akinlabi, M. A. Onitiri, and F. M. Varachia, “Aluminum Matrix Composites for Industrial Use: Advances and Trends,” Procedia Manuf., vol. 7, pp. 178–182, 2017, doi: 10.1016/j.promfg.2016.12.045.