
 

 

 
Abstract—This paper aims to prove the accuracy of an 

inexpensive smartphone camera as a non-contact vibration sensor to 
recover the vibration modes of a vibrating structure such as a 
cantilever beam. A video of a vibrating beam is filmed using a 
smartphone camera and then processed by the motion magnification 
technique. Based on this method, the first two natural frequencies and 
their associated mode shapes are estimated experimentally and 
compared to the analytical ones. Results show a relative error of less 
than 4% between the experimental and analytical approaches for the 
first two natural frequencies of the beam. Also, for the first two-mode 
shapes, a Modal Assurance Criterion (MAC) value of above 0.9 
between the two approaches is obtained. This slight error between the 
different techniques ensures the viability of a cheap smartphone 
camera as a non-contact vibration sensor, particularly for structures 
vibrating at relatively low natural frequencies. 
 

Keywords—Modal Analysis, motion magnification, smartphone 
camera, structural vibration, vibration modes. 

I. INTRODUCTION 

IBRATION response of any structure depends on its 
material properties and geometrical shape in addition to 

the excitation force characteristics such as the frequency, 
amplitude, direction and the point of application. The modal 
characteristics of a vibrating structure can be determined 
based on modal analysis. The end goal of the modal analysis is 
to collect data from the vibrating structure to characterize its 
vibrational behavior. Experimental modal analysis can be 
performed using contact methods such as with accelerometers 
or non-contact methods using laser vibrometry. Contact 
sensors such as accelerometers are used for modal analysis 
with high accuracy [1]. However, this type of sensors affects 
the obtained results due to its mass especially when used for 
small structures, in addition to the difficulty and numerous 
sensors when used for large structures. Noncontact sensors 
such as laser vibrometry [2], [3] depend on the 
electromagnetic radiation to transmit data, but it is expensive. 
This later sensor measures the velocity at a discrete point 
using a focused laser beam. The velocity is then calculated 
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using the Doppler shift between the incidents light and 
scattered light returning to the measuring device.  

A modern approach called motion magnification based on 
processing the time series of the vibration response or color 
values in the video at each pixel was recently used. This is 
achieved by applying a signal processing to each time series to 
amplify a band of interesting frequencies between the low and 
high cutoff frequencies. This modern method provides a 
promising technique for visualizing and obtaining small 
displacements [4]-[7]. This methodology, firstly developed by 
MIT [8], was used to estimate the material properties of an 
object in addition to the vibration modes of a rod using an 
expensive camera [9], structural damage identification [10], 
and to recover sound from the video [11]. Different fields of 
use exist such as for medical purposes where the periodic 
motion of the head due to the movement of blood [12] is 
detected. Extraction of features using video cameras provides 
an interesting and promising method for modal analysis of a 
vibrating structure. They can be employed as inspection 
sensors or remote monitoring. These video cameras range 
from expensive and precise instruments with a high-resolution 
and large frame rate to inexpensive equipment such as a 
smartphone camera. 

The motion magnification technique was applied 
successfully in different fields, but it uses expensive cameras 
with a large frame rate. However, the presented work aims to 
ensure the feasibility of an inexpensive smartphone camera as 
a non-contact vibration sensor.  

This paper is organized as follows: Section II presents the 
analytical calculation used to determine the natural 
frequencies of a cantilever beam. Besides, this section presents 
the motion magnification methodology applied on a vibrating 
beam using an inexpensive smartphone camera. Section III 
validates the experimental results from the motion 
magnification technique by comparing the extracted modes to 
the analytical ones. A conclusion and suggestions for future 
work will be presented in Section IV. 

II. METHODOLOGY 

The feasibility of an inexpensive smartphone camera as a 
vibration sensor for modal identification will be examined by 
recovering the first two vibration modes experimentally based 
on motion magnification technique and compared to the 
analytical ones. This section presents first the analytical model 
of the cantilever beam. Then, the motion magnification 
technique will be discussed to present how qualitative features 
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inside the video can be analyzed to extract the beam mode 
shapes and their corresponding natural frequencies. The 
dimensions and material properties of the used beam model 
are shown in Table I. 

 
TABLE I 

BEAM SPECIFICATIONS 

Symbol Quantity SIa Unit 

E elastic modulus 2×1011 Pa 

𝜌 density 7870 Kg/m3 

l length 0.419 m 

b width 0.0294 m 

h thickness 0.00103 m 
aSI units are the International system of units; Pa = Pascal, kg = kilogram, 

m = meter. 

A. Analytical Modeling  

A cantilever beam is a structure used in many practical 
engineering applications such as vibration absorbers and 
turbine blades. The vibration of the beam is studied in the 
transverse direction applying Euler-Bernoulli theory since 𝑙/𝑏 
= 14.25 and 𝑙/ℎ = 406.8 > 10. Fig. 1 illustrates a cantilever 
beam under transverse vibration (the deflection w(x,t) is in the 
y-direction). The presented cantilever beam has a rectangular 
cross-section A, width b, thickness h, length l, and bending 
stiffness EI (E is Young’s modulus and I is the cross-sectional 
area moment of inertia about the z-axis). 
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Fig. 1 Free body diagram of a transverse cross-section of a cantilever 
beam 

 
The formulation procedure of the undamped natural 

frequency equation can be obtained from the beam free 
vibration behavior (f (x,t) = 0), which can be written as: 
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Equation (1) can be solved by considering four boundary 

conditions since the derived equation contains four spatial 
derivatives. It will not be reviewed in this work as it can be 
found in [15]. The obtained undamped natural frequencies (ωi) 
are related directly to the material properties and the 
geometrical parameters by: 
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Parameter k depends on the mode number. The first five 

natural frequencies are calculated by substituting the values of 
the constant k by 1.87, 4.69, 7.85, 10.99 and 14.13, 
respectively. For the rest of modes (i.e., for values of n > 5), 
natural resonant frequencies can be obtained by computing the 

parameter k using 𝑘 ൌ ሺଶ௡ିଵሻ

ଶ
𝜋. 

B. Motion Magnification Technique 

Motion magnification is an algorithm for extraction features 
of a vibrating object inside the video. A video consists of a 
series of images which has two domains: First, the time 
domain corresponding to the number of images that make the 
video and second the spatial domain corresponding to a 2D 
field of brightness value in an image. These images can be 
decomposed in the spatial domain by filters into phase and 
amplitude signals to form a time-varying signals 
representative of the video. 

Based on the phase-based motion magnification [16], the 
displacement signal of the vibrating object inside the video 
can be estimated in the time domain (In this case the vibrating 
object is a cantilever beam). Once the displacement signal is 
obtained, the Fourier transform is used to transform the 
displacement signal from the time domain into the frequency 
domain. The peaks in the Fourier spectrum of the 
displacement signal correspond to the modal frequencies 
(natural frequencies). These modal frequencies do not vary 
across the surface of the structure in which the power spectra 
of local motions should have peaks at the same resonant 
frequencies. Therefore, the global motion power spectrum can 
be computed for a video by averaging the local motion power 
spectra extracted at every pixel. This leads to a signal temporal 
power spectrum describing the modal frequencies of motion 
that exist in the filmed video. Once the modal frequencies are 
obtained, the spatially varying displacement signal in the 
video is filtered with a bandpass filter centered at each modal 
frequency and with specified boundaries known as low and 
high cutoff frequencies. Thus, the obtained filtered 
displacement signal can be utilized to estimate the mode shape 
at its corresponding modal frequency. 

1. Derivation 

This technique is based on local phase and local amplitude 
in oriented bandpass filters [17], [18]. These are analogous 
quantities to the phase and amplitude of Fourier series 
coefficients, in which the phase controls the location of basis 
function while the amplitude controls its strength. The phase 
corresponds to global motion in case of Fourier transform 
while local phase gives a way to compute the local motion. 
Consider a video, with image brightness I(x,y,t) at spatial 
location (x,y) and time t, the local phase and local amplitude 
in orientation θ at a frame at time t0 can be computed by a 
spatial bandpassing the frame with a complex filter 𝐺ଶ

ఏ ൅
𝑖𝐻ଶ

ఏ to get [4]: 
                    

World Academy of Science, Engineering and Technology
International Journal of Mechanical and Mechatronics Engineering

 Vol:15, No:1, 2021 

53International Scholarly and Scientific Research & Innovation 15(1) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
ec

ha
ni

ca
l a

nd
 M

ec
ha

tr
on

ic
s 

E
ng

in
ee

ri
ng

 V
ol

:1
5,

 N
o:

1,
 2

02
1 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
11

80
1.

pd
f



 

 

  ),,(),,( 022
),,(

0
0 tyxIiHGetyxA tyxi  


       (3) 

 
where 𝐴ఏሺ𝑥, 𝑦, 𝑡଴ሻ is the local amplitude, ∅ఏሺ𝑥, 𝑦, 𝑡଴ሻ is the 
local phase, 𝐺ଶ

ఏ and 𝐻ଶ
ఏ are steerable filters [19]. However, the 

constant contours of the local phase through time correspond 
to the displacement signal [17], [18]. This can be expressed as: 
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By differentiating with respect to time, this yields to: 
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where 𝑢 and 𝑣 are the velocity in 𝑥 and 𝑦 directions 

respectively. Considering the case 
డ∅ഇሺ௫,௬,௧ሻ

డ௬
ൎ 0 and 

డ∅ഏ/మሺ௫,௬,௧ሻ

డ௫
ൎ0 [6], the velocity in units of a pixel can be 

expressed as: 
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The velocity between the first frame and the ith frame is 

computed to obtain the displacement signal in time. The 
displacement signal is converted to millimeters unit by 
multiplying the length of the structure in the scene divided by 
the number of pixels it spans. The result of mentioned 
processing is the time-domain displacement signal which can 
be transformed into the frequency domain by Fourier 
transform to obtain the modal frequencies. 

2. Video Capture 

To visualize the structure vibration modes, an appropriate 
frame rate is needed to treat these frequencies with the 
Nyquist limit [4]. This limit indicates that the wave frequency 
must not exceed half the sampling frequency. Besides, the 
video must be captured with enough time. For low 
frequencies, the captured video is long compared to that of 
high frequency. Note that filming with a higher fps will only 
expand the frequency range to recover higher modes but will 
not improve the accuracy unless the resolution is changed. 

3. Experimental Measurement 

The cantilever beam was clamped to a steel base next to two 
loudspeakers and excited by a white sound signal (Fig. 2). 
This excitation is stopped before filming so that the beam 
vibrates at its natural frequencies. The motion of the excited 
cantilever beam was filmed using the Samsung S9 smartphone 
camera at 240 fps (frame per second) in a closed room with no 
AC powered lights. With this latter fps filming, the camera 
will ensure recovering the modes below 120 Hz (240 fps/2). 
The specifications of the used camera are shown in Table Ⅱ. 

C a m e ra

B e a m
S p e a k e r

 

Fig. 2 Setup of the experimental measurement 
 

TABLE Ⅱ 
SAMSUNG S9 SMARTPHONE CAMERA SPECIFICATIONS 

Price of the smartphone 
4K video recording 
Slow motion video 
Super slow-motion 

600 US dollars 
30 fps or 60 fps 

1080pixel at 240 fps 
720pixel at 960 fps 

 

After filming the video of the vibrating beam, the video is 
transferred to the Tracker software [13] in which the 
qualitative displacement of the beam edge at a small pixel 
inside the video is transformed into a quantitative 
displacement signal in the time domain as shown in Fig. 3. 
Fast Fourier Transform (FFT) was then implemented to the 
recovered time-domain displacement signal to obtain the 
modal frequencies which visualized as the peaks in the Fourier 
spectrum. Once the modal frequencies are determined, the 
motion magnification algorithm was utilized to extract the 
displacement at each of the recovered frequency to determine 
the mode shape. During processing, the displacement signal is 
filtered with a bandpass filter centered at each of the recovered 
model frequency. Therefore the two obtained processed videos 
represent the mode shapes at the first and second natural 
frequency. The obtained mode shapes in each of the processed 
video are transformed into quantitative data using Tracker. 

 

 
                                     (a)                      (b)              

Fig. 3 The first frame (a) and the fifth one (b) extracted using Tracker 
software [13] at a small pixel. Each number corresponds to the 

position of the beam at the specific frame 

III. RESULTS AND DISCUSSIONS 

A. Frequency Sensitivity and Modes 

Fig. 4 shows the recovered displacement signal in the time 
domain. The Fourier spectrum of this displacement signal is 
shown in Fig. 5. Two peaks can be observed in this figure, 
which correspond to the first and second natural frequencies of 
the beam. The recovered first peak at 4.787 Hz with more 
power corresponds to the fundamental beam frequency, while 
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the second peak at 31.137 Hz corresponds to the second mode 
of the beam. Different modes of vibration do not equally 
contribute to the response of a structure. Thus, more energy is 
stored in the lower frequency modes. Table Ⅲ compares the 
experimental and analytical results of the first two natural 
frequencies of the beam. 

 

 

Fig. 4 Recovered displacement signal at the beam edge 
 

 

Fig. 5 Fourier spectrum of the time domain displacement signal 
 

TABLE Ⅲ 
FIRST-TWO BEAM NATURAL FREQUENCIES USING DIFFERENT APPROACHES 

Mode number Experimental Analytical % Error 

Frequency of first mode (Hz) 4.787 4.777 0.2% 

Frequency of second mode (Hz) 31.137 29.94 3.84% 

 

Based on Table Ⅲ, it can be observed that the first two 
natural frequencies recovered from motion magnification 
technique are very close to the analytical approach. For the 
first mode, the difference between the experimental and 
analytical computation is only 0.01 Hz while it is 1.197 Hz for 
the second mode. However, the relative errors between the 
two approaches are respectively 0.2% and 3.84% for the first 
and second natural frequency. This small variation between 
different approaches is possible, due to the material variability 
such as the elastic modulus and density. 

B. Mode Shape Analysis 

The extraction of the displacements from the processed 
video at each natural frequency allows determining the mode 
shape. The objective was accomplished by controlling the low 
and high cut-off frequencies of the processed video. Figs. 6 
and 7 show the analytical and experimental computation of the 
first and second mode shape of the beam, respectively. 

 

Fig. 6 First mode shape calculated using different approaches 
 

 

Fig. 7 Second mode shape calculated using different approaches 
 

Based on Figs. 6 and 7, it can be observed that the 
experimental mode shapes are very close to the analytical 
ones. The similarity of mode shapes between different 
approaches can be examined based on MAC [14]. The MAC 
values vary between 0 and 1, where a value of 1 means a 
perfect match. A MAC value less than 0.77 indicates an 
unfortunate resemblance of mode shapes. The MAC value of a 
mode shape is essentially the normalized dot product of the 
modal vector at each common node (i.e., points), as presented 
in (8): 

 

 
   jjii
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where ∅௜ and ∅௝ represent the modal vectors identified using 
different techniques.  

The computed MAC values between the analytical and 
experimental approaches for the first and second mode shape 
are 0.9476 and 0.9048 respectively. Based on the MAC values 
and Figs. 6 and 7, it is observed that the first mode shape 
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achieves a better similarity between the two approaches than 
the second one. However, a consistent correspondence of the 
mode shapes extracted using different techniques is 
concluded.  

IV. CONCLUSION 

This paper proved the ability to recover the vibration 
behavior of a mechanical structure such as a cantilever beam 
using an inexpensive camera based on motion magnification 
technique. The relative error between the experimental and 
analytical approaches is below 4% for the first two natural 
frequencies of a cantilever beam. Besides, the first two-mode 
shapes were recovered with a MAC value of above 0.9 
between the two approaches. Thus, this small error between 
the experimental and analytical techniques ensures the 
feasibility of an inexpensive smartphone camera as a non-
contact vibration sensor.  

Although the presented inexpensive experimental method is 
limited to relatively low frequencies with less than 120 Hz for 
a 240 fps camera (or less than 480 Hz for a 960 fps); however, 
this does not prevent the exploitation of this method and draws 
attention to large structures due to their low natural resonance 
frequencies. For future work, one can develop the algorithm of 
the method to an application for a smartphone, and the ability 
to visualize the vibration modes (model frequencies and mode 
shapes) of a vibrating structure. Besides, further studies can be 
conducted to utilize it for identification of the early damage 
detection in structures. 
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