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Abstract—We design and implement a precise model of string
operations using finite state machine transformers and state
transformers to approximate the values string variables can take
throughout the execution of the program. We use our model to analyze
Android program string variables. Our experimental results show that
our string analysis is very efficient at detecting the contextual effect
of string operations on the string variables. Our model proved to be
very useful when it came to verifying statements about the string
variables of the program.
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I. INTRODUCTION

STRING analysis plays an important role in detecting

vulnerabilities of Android applications. In Android, a

bridge between JavaScript and Java code allows JavaScript

code to invoke privileged system operations. An attacker

can exploit this vulnerability by injecting malicious code

into a string passed to a web browser component hosted

by the mobile app. An analyzer can detect those attacks by

checking if the final string can contain an attack pattern.

JavaScript command injection attacks can be detected by the

presence of special characters in the untrusted input, the

characters that define a script tag, the less than character,

the greater than character, and the keyword script. Code

injection attacks are the most popular forms of attacks in

distributed applications [1]. The confidentiality and integrity

of an application can be compromised by attacks caused

by strings originating from untrusted sources injected with

malicious scripts. The malicious script reaches a sensitive

operation and executes with the same permissions of the

application, which can compromise the system. String analysis

also serves as a building block of more complex analyses.

In taint analysis, a precise string analysis provides useful

information for detecting the contextual effect of a string

operation on taint propagation. For instance, confidential

information can be represented with a pattern or a regular

expression and the analyzer can detect if the final expression

still contains the tainted pattern, or if it was sanitized by the

program.

The previous state-of-the-art string analyzers of Java

programs such as JSA [2] are not precise enough as they

do not abstract all concrete string operations precisely. For

instance, JSA’s abstract string comparison operations such

as contains, equals, startsWith, endsWith and

isEmpty are precise only when their abstract operands are
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constants. Furthermore, its abstract insert, substring
and replace operations ignore numerical index operands.

In this paper, a precise string analysis is presented. Inspired

by [3], we use the domain of finite state automata as the

abstract string domain and finite state automaton transformers

as abstract string operations. The main novelty of this

work is twofold: (a) designing abstract operations that

approximate Android string operations including those that are

not addressed in [3], and (b) applying numerical analysis to

improve approximations of string operations with numerical

operands, and (c) precise analysis of conditional expressions

based on (a) and (b). The result is a more precise analyzer for

Android applications. Our experimental results show that our

string analysis is very efficient at detecting contextual effect

of string operations on the string variables.

The rest of the paper is organized as follows. In Section II,

we present a motivation example. In Section III, we discuss

the related work. In Sections IV, V and VI we present our

string analysis. In Section VII, we present the experimental

results and we conclude in SSection VIII.

II. MOTIVATING EXAMPLE

To showcase the benefits of a precise string analysis on taint

propagation, consider the following program code:

1

2

3

4

String s = TelephonyManager.getDeviceId(); //source of sensitiv 
String t = "neutral";
while (Math.random() ≤ 0.5) t = t.concat(s);
if (!t.contains(s))(new ConnectionManager()).publish(t); //sink

Fig. 1 Code Snippet

The broadcast instruction at line 4 is constrained with the

condition that the sensitive piece of information that was read

at line 1 does not occur in the variable being published. State

of the art static taint analyzers such as FlowDroid [4], treat it

as a leak because their approximations to string comparison

operations such as contains are too coarse. Our string

analysis precisely models string comparison operations as

abstract store transformers and allows us to conclude that

the variable being published does not contain any sensitive

information.

III. RELATED WORK

Violist [5] is a framework for string analysis of Java and

Android applications. Violist gives the user the ability to define

custom semantics for the string operations to closely model

their effect in the problem domain being analyzed. Violist
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relies on symbolic execution; it separates the representation

from the interpretation of string operations. Violist models

relationships between string variables and string operations

using an intermediate representation and then interprets these

operations with the provided custom semantics to compute

the effect of the string system. Violist provides the user

with complex constructs for modeling loops and nested loops

as well as for tracking dependencies between the variables

affected by those loops. The custom semantics can then

approximate the behavior of those loops using finite loop

unraveling or using widening to approximate values of infinite

strings.

Epicc [6] analyses the flow of information between

different components of Android applications. Epicc reduces

the problem of inter-component communication (ICC) of

Android applications to an instance of an IDE [7] problem

for finding ICC vulnerabilities with high accuracy. Epicc

uses string analysis to detect communication from one

component to another and approximates the parameters of

this communication to determine the possible receivers of

the intent as well as the data being exchanged. In Epicc,

distributive environment transformers model the effects of

system method calls on the intents and the data they carry.

The problem is solved using Heroes [7] and Soot [8].

JSA [2] is a String analyzer for Java programs. JSA

uses a regular language to compute a superset of the

values a string variable can take. JSA is used for verifying

properties of strings that are dynamically computed, such

as dynamically generated XML strings and dynamically

generated SQL queries. JSA transforms the string system

into a context-free grammar (CFG), with a production for

each string expression. Modeling string operations using

finite state machine transformers, the CFG is widened into

a regular language, approximating the state space of the

program. JSA only considers strings and string manipulating

operations that occur in the program, abstracting everything

else away and intelligently extracting a regular language that

over approximates the language of the original context-free

grammar. JSA models the operations on strings using finite

state machine transformers. Operations such as replace,

and substring are defined on automatons to produce

a machine whose language over approximates the set of

strings that occur as a result of this concrete operation. The

modeling of the abstract operations in JSA is not precise

enough and quickly falls into broader over approximations.

JSA ignores the operands of most of the string operations

and quickly loses its precision. For example, JSA does not

account the for numerical operands of abstract operations

such as substring and insert. The model JSA uses for

string.replace cannot handle the case where the string

operands are finite state machines.

FlowDroid [4] [9] is a context sensitive taint flow analyzer

of Android components, it is able to detect flow from a private

piece of information into a public sink. In FlowDroid taint

analysis becomes an IDE [7] problem and is resolved using

Heroes [7] and Soot [8] frameworks for static analysis.

While FlowDroid [4] is value insensitive and relies

completely on Soot modules to optimize the call graph

generation and to eliminate unreachable code. Epicc [6]

benefits from a simple constant propagation analysis which

allows the tool to evaluate simple string expressions that

evaluate to a literal. The analysis approximates the value

of the string expression to be any string when the result

no longer evaluates to a constant string literal or when the

expression is too complex to be evaluated by the analysis.

The results of string analysis are used to resolve intents and

to approximate receivers of inter component communication,

among other usages. The string analysis Epicc performs is not

precise enough and results in broader approximations and lots

of false positives where the tool assumes a communication

can occur, whereas in practice it does not. Yu et al. [3]

does not model string operations such as substring and

insert and their modeling of string conditional constructs

is very limited. They only handle conditional constructs

such as equality of strings and isEmpty. Our modeling

of the conditional constructs on strings is more elaborate

and more precise. We handle conditional string expressions

such as contains, startsWith, endWith in addition

to equals and isEmpty. We also handle the negation,

the conjunction and the disjunction of string conditional

expressions.

There has been much work on string analysis of programs in

Java / Android and other programming languages [2], [5], [6],

[10]- [16]. The abstract domains proposed for stings analysis

range from constant propagation [10], to multitrack finite

state machines [16], providing different trade-offs between

precision and cost of analysis.

Yu et al. [16] define the lattice of the multitrack

deterministic finite state machine. A multitrack deterministic

finite state machine transits on multiple string variables

rather than on just one string variable, like a single track

deterministic finite state machine does. Multi-track automatons

are used to improve the precision of string analysis algorithms.

Multi-track automatons provide a relational form of tracking,

which allows the expression of a more elaborate form of

verification that prevents many of the errors that cannot be

expressed with single track automatons.

Amadini et al. [10] use abstract interpretation to combine

simple abstract domains into a hybrid domain resulting

in an original and precise analysis of string values. The

abstract domain is defined as the product of multiple simple

well-known existing abstract domains, such as the String Set

domain [10], the Constant String domain [10], the Character

Inclusion domain [11], the Prefix, Suffix domain [11] and the

String Hash domain [12] as well as JavaScript specific domains

from [13]- [15].

The String Set Domain SSk can represent at most k strings

precisely before losing its precision. Its abstract domain is the

subsets of strings whose cardinality is at most k augmented

with a top element. The abstraction function maps a subset of

strings into itself when its cardinality is less than or equal to

k or into the top of the lattice otherwise. The concretization

function maps a subset of size at most k into itself and the top

of the lattice into the set of all strings. The Constant string

domain or CS is the special case of string subset domain

where the number of strings being tracked is exactly one.
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In the String Set domain, any string operation that results in

a set that exceeds the limit k, the maximal number of strings

being tracked, results in a loss of information. In the CS
domain, a change in the value of a variable being tacked causes

the analysis to lose its information. Consider the example

of a set of concrete string values SS={"relational",
"rational"}
The abstraction of the set SS in SS2 is the set itself and the

abstraction of the set SS in CS is the top of the lattice.

In the Character Inclusion domain, CI , an element of the

abstract domain is a pair < l, u > where l and u are subsets

of characters. The abstraction of a set S of words from Σ∗ is

the pair < l, u > , where l is the set of characters that must

occur in any w from S, and u is the set of characters that

may occur. The concretization of a pair < l, u > is the set

of words w that contain all the characters of l and some of

the character of u.

The abstraction of the set SS in CI is the set

{{"r","a","t","i","o","n","l"},{"r","a",
"t","i","o","n","l","e"}}.

Interval domains ignore the structure of the concrete string

being approximated. A word is represented with the characters

that occur in it without regard to the order in which they occur.

The result is a computationally cheap model that can produce

useful information.

In the Prefix Suffix domain, an abstract value is a pair of

strings < p, s > that represents all the strings w that start with

p and end with s. The abstraction of a set of words S is the

pair of words < p, s > where p is the longest common prefix

of all the words of S and s is the longest common suffix of

all the words of S. The abstraction of the set SS in PS is the

set {"r","ational"}.

The String Hash domain, SH , uses a hash function to map

a word or a subset of words into an integer, integer range,

or a bucket. In the String Hash domain, a word maps to the

sum of the integer ASCII codes of the characters that occur

in it. The SH domain is useful for easily inferring inequality

of strings. An empty intersection of the hash buckets of two

sets of words allows us to conclude that the two sets contain

different words.

IV. THE REGULAR ABSTRACT DOMAIN FOR STRING

ANALYSIS

We use the domain of finite state automata to approximate

the sets of strings that variables might take during program

execution, because it captures string properties sufficiently

precisely and it admits sufficiently efficient implementation.

In the Regular Abstraction a Galois Connection is

established between the set of concrete strings and the set of

regular languages. The concrete domain < ℘ (Σ∗) ,⊆> is the

power set of strings ordered by subset inclusion. A language

is regular iff it can be accepted by some finite state machine

M. The set of all regular languages over a given alphabet

Σ can be represented by the set of all deterministic finite

state machines DFA over Σ. Let M1,M2 ∈ DFA. Define

M1 ≤ M2 ⇐⇒ L (M1) ⊆ L (M2) where L(M) is the regular

language accepted by M . The relation ≤ is a preorder and the

relation ≡ where M1 ≡ M2 ⇐⇒ M1 ≤ M2∧M2 ≤ M1 is an

equivalence relation. Denote by [M ]≡ the equivalence class of

≡ containing M and define [M1]≡ 	 [M2]≡ ⇐⇒ L (M1) ⊆
L (M2). < DFA/≡,	> is a complete lattice where DFA/≡
is the quotient of DFA with respect to ≡. In the sequel, we

shall use arbitrary member of an equivalence class of ≡ to

represent that class since all the abstract operations in our

string analysis are homomorphisms with respect to ≡. Let 0,

1 and Λ be constant DFAs such that L(0) = ∅, L(1) = Σ∗

and L(Λ) = {ε} where ε is the empty string. The meet of two

DFAs denoted by �, is their intersection and the join is their

union.

The abstraction function α : ℘ (Σ∗) −→ DFA/≡ is defined

as follows: α (S) = �{M |S⊆L(M)}. α (S) is the smallest of

all machines that accept S. The concretization function γ :
DFA/≡ −→ ℘ (Σ∗) is defined as follows: γ (M) = L (M).
γ (M) is the set of all words accepted by the machine M. The

following equivalence can be easily proved and < α, γ > is a

Galois connection.

S ⊆ γ (M) ⇐⇒ α (S) 	 M where S ∈ ℘ (Σ∗) and M ∈
DFA/≡

V. BRANCH SENSITIVITY

Concrete operations on strings fall into two categories: those

that return string values and those that return boolean values.

In this section present the abstract operations that approximate

those concrete operations that return boolean values. They are

abstract store transformers. In the next section we present the

abstract operations that approximate those concrete operations

that return string values.

We define and implement rules to restrict the incoming

abstract store to a given condition and apply constraints on

the variables in the condition accordingly. Let V ar be a

denumerable set of string variables. The set of the abstract

stores is Π = V ar −→ DFA. A string expression e ∈ SExp
is either a string literal � ∈ Σ∗, or a string variable v ∈ V ar,

or e1.concat(e2), or e1.substring(i, j) or e1.replace(e2, e3),
or e1.insert(e2, i) where e1, e2, e3 ∈ SExp and i, j are

integer constants. A conditional expression c ∈ BExp on

string variables is either a primitive conditional expression,

or a negation of a conditional expression, or a conjunction

of two conditional expressions c1&&c2 or a disjunction of

two conditional expressions c1||c2 with c1, c2 ∈ BExp. A

primitive conditional expression is either e1.equals(e2) or

e1.contains(e2) or e1.startsWith(e2) or e1.endsWith(22)
or e1.isEmpty() where e1, e2 ∈ SExp.

The semantic functions for branch sensitivity make use of

the following helper functions: substrings, prefixes, suffixes

and complement: DFA −→ DFA. These helper functions

take an automaton as input and produce the automaton that

accepts the substrings, prefixes, suffixes and complement

of the original automaton, respectively. Substrings takes an

automaton as input and constructs a machine that accepts any

word that can occur as a substring of a word accepted by

the original machine. A new initial and a new final state are

added to the original machine. An epsilon transition from the

new initial state is added to every other state. An epsilon
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transition is added from every state in the original machine

to the new final state. The machine is then determinized.

Prefixes takes an automaton as input and constructs a machine

that accepts any word that can occur as a prefix of a word

accepted by the original machine. A new final state is added

to the original machine and an epsilon transition is added

from every state to the new final state. The machine is

then determinized. Suffixes takes an automaton as input and

constructs a machine that accepts any word that can occur

as a suffix of a word accepted by the original machine.

A new initial state is added to the original machine and

an epsilon transition is added from the new initial state

to every other state in the original machine. The machine

is then determinized. Concat DFA −→ (DFA −→
DFA), is a binary operator that takes two automata and

returns their concatenation. By concat(M1,M2,M3), we

mean concat(M1, concat(M2,M3)).
Branch sensitivity is realized through three semantics

functions. Semantic function E : SExp −→ (Π −→ DFA)
evaluates a string expression against an abstract store and

returns an abstract string. Semantic function C : BExp −→
(Π −→ Π) restricts the variables in a condition and returns an

abstract store. Semantic function A : SExp −→ DFA −→
(Π −→ Π) restricts the variables in an expression so that

its value is described by a given abstract string. It returns an

abstract store. These semantic functions are defined by 3-29.

Some explanations are in order. Take the example of

(9) where the conditional expression e1.equals(e2) is to be

restricted against π ∈ Π. The expressions e1 and e2 ∈ SExp
are two string expressions and π is the incoming abstract store.

We start by evaluating the expressions e1 and e2 separately

in the incoming abstract store π, Let a1 = E [[e1]]π and

a2 = E [[e2]]π. We then restrict the variables in e1 such that

e1 is a string accepted by a2 and we restrict the variables in e2
such that e2 is a string accepted by a1. Let π1 = A [[e1]]a2 π
and π2 = A [[e2]]a1 π. Then we take the meet of the resulting

stores, the results that satisfy both restrictions simultaneously.

We have C [[e1.equals (e2)]]π = π′ = π1 � π2.

Take the example of (10) where the conditional expression

e1.contains(e2) is to be restricted against π. We start by

evaluating the expressions e1 and e2 separately in the incoming

abstract store π, Let a1 = E [[e1]]π and a2 = E [[e2]]π. We

then construct the machine a′2 = concat (1, a2,1). a
′
2 accepts

the words where words from L(a2) can occur as substrings.

We also construct the machine a′1 = substrings (a1). a′1
accepts words that occur as substrings of words from L(a1).
We then restrict the variables in e1 such that e1 is a string

accepted by a′2 and we restrict the variables in e2 such that

e2 is a string accepted by a′1. Let π1 = A [[e1]]a
′
2 π and

π2 = A [[e2]]a
′
1 π. Then we take the join of the resulting

stores, the results that satisfy both restrictions simultaneously.

We have C [[e1.contains (e2)]]π = π′ = π1 � π2

In the case of (11) the conditional expression

e1.startsWith(e2) is to be restricted against π. Let a1
and a2 be the finite state machines resulting from the

evaluation of e1 and e2 respectively, in π. We construct the

automaton a′2 = concat (a2,1). a
′
2 is a machine that accepts

the words that start with words from L(a2). We also construct

the automaton a′1 = prefixes (a1). a′1 is a machine that

accepts words that occur as prefixes of words from L(a1). We

then restrict the variables in e1 so that its value is accepted

by a′2 and we restrict the variables in e2 so that its value is

accepted by a′1. We then take the results that satisfy both

restrictions simultaneously.

In the case of (12), the conditional expression

e1.endsWith(e2) is to be restricted against π. Let a1
and a2 be the finite state machines resulting from the

evaluation of e1 and e2 respectively, in π. We construct the

automaton a′2 = concat (1, a2). a
′
2 is a machine that accepts

the words that end with words from L(a2). We also construct

the automaton a′1 = suffixes (a1). a′1 is a machine that

accepts words that occur as suffixes of words from L(a1).
Next, we restrict the variables in e1 so that its value is

accepted by a′2 and we restrict the variables in e2 so that its

value is accepted by a′1. We then take the results that satisfies

both restrictions simultaneously.

SExp ::= s|v|e1.concat (e2) |e1.substring (i, j)
|replace (e1, e2, e3) |e1.insert (e2, i)

(1)

where s is a string literal, v ∈ V ar is a string variable, ei ∈
SExp and i ,j are integer constants

BExp ::= e1.equals (e2) |e1.contains (e2)
|e1.startsWith (e2) |e1.endsWith (e2) |e1.isEmpty ()

|c1&&c2|c1||c2|�ci
(2)

where ei ∈ SExp and ci ∈ BExp

E [[e1.concat (e2)]]π = concat (E [[e1]]π,E [[e2]]π) (3)

E [[e1.substring (i, j)]]π = substring (E [[e1]]π, i, j) (4)

E [[e1.insert (e2, i)]]π = insert (E [[e1]]π,E [[e2]]π, i) (5)

E [[replace (e1, e 2, e 3)]]π = replace (E [[e1]]π, E [[e2]]π, E 
[[e3]]π) (6)

E [[v]]π = π (v) (7)

E [[s]]π = DFA(s) (8)

where DFA(s) returns a DFA that accepts the string litteral

s.

C [[e1.equals (e2)]]π = A [[e1]](E [[e2]]π)π�A [[e2]](E 
[[e1]]π)π (9)

C [[e1.contains (e2)]]π =

〈
A [[e1]](concat (1,E [[e2]]π,1))π �

A [[e2]](substrings (E [[e1]]π))π

〉

(10)

C [[e1.startsWith (e2)]]π =

〈
A [[e1]](concat (E [[e2]]π,1))π �

A [[e2]](prefixes (E [[e1]]π))π

〉

(11)
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C [[e1.endsWith (e2)]]π =

〈
A [[e1]](concat (1,E [[e2]]π))π �

A [[e2]](suffixes (E [[e1]]π))π

〉

(12)

C [[e1.isEmpty ()]]π = A [[e1]](Λ)π (13)

C [[�e1.equals (e2)]]π =

〈
A [[e1]](complement (E [[e2]]π))π 
 A [[e2]](complement (E [[e1]]π))π

〉
(14)

C [[�e1.contains (e2)]]π =

〈
A [[e1]](complement (concat (1,E [[e2]]π,1)))π 


A [[e2]](complement (substrings (E [[e1]]π)))π

〉 (15)

C [[�e1.startsWith (e2)]]π =

〈
A [[e1]](complement (concat (E [[e2]]π,1)))π 


A [[e2]](complement (prefixes (E [[e1]]π)))π

〉 (16)

C [[�e1.endsWith (e2)]]π =

〈
A [[e1]](complement (concat (1,E [[e2]]π)))π 


A [[e2]](complement (suffixes (E [[e1]]π)))π

〉 (17)

C [[�e1.isEmpty ()]]π = A [[e1]](complement (Λ))π (18)

C [[c1&&c2]]π = C [[c1]]π � C [[c2]]π (19)

C [[c1||c2]]π = C [[c1]]π 
 C [[c2]]π (20)

C [[�(c1&&c2)]]π = C [[�c1||�c2]]π (21)

C [[�(c1||c2)]]π = C [[�c1&&�c2]]π (22)

C [[�(�c1)]]π = C [[c1]]π (23)

A [[e1.concat (e2)]]a π =

〈
A [[e1]](prefixes (concat (1,E [[e2]]π) � a))π � A [[e2]](suffixes (concat (E [[e1]]π,1) � a))π

〉
(24)

A [[e1.insert (e2, i)]]a π =

〈
A [[e1]]〈concat (substring (a, 0, i) ,1) 
 concat (1, substring (a, i, length(a)))〉π

� A [[e2]](substring (a, i, length(a2)))π

〉 (25)

where length(a) is the maximal depth of DFA a

A [[e1.substring (i, j)]]a π =

A [[e1]](concat(1, (E [[e1.substring (i, j)]]π � a),1))π
(26)

A [[replace (e1, e2, e3)]]a π =

A [[e1]](E [[replace (e1, e2, e3)]]π � a)π
(27)

A [[v]]a π = π[v −→ π (v) � a] (28)

A [[�]]a π =

{
λv.0 if � �∈ L(a);
π Otherwise.

(29)

While a branch-insensitive analysis propagates the identity

function along the different branches of a boolean condition

without applying any restrictions on the incoming data flow

information, a branch-sensitive analysis restricts the incoming

abstract store to satisfy a boolean expression which results

in more precise results. Consider the following example

of conditional restriction. C [[t.contains(s)]]π where π =
{t ←− DFA("neutral(IEMI123)*") = a1, s ←−
DFA("IEMI123") = a2}. π is the abstract store that

associates t with the DFA that accepts the regular expression

"neutral(IEMI123)*" and s with the DFA that accepts

the string literal "IEMI123".
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C [[t.contains(s)]]π
= 〈A [[t]] concat(1, a2,1)π � A [[s]] substrings(a1)π 〉

= π[t ←− π(t) � concat(1, a2,1)]
�π[s ←− π(s) � substrings(a1)]

= {t ←− DFA("neutral(IEMI123)+"),
s ←− DFA("IEMI123")}

Our analysis propagates

{t ←− DFA("neutral(IEMI123)+"), s ←−
DFA("IEMI123")} to the instructions of the true

branch. The value propagated to the false branch is

π′ = C [[�t.contains(s)]] π, the result of restricting the

negation of the Boolean expression against the incoming

abstract store π which is

π′ = {t ←− DFA("neutral"), s ←−
DFA("IEMI123")}.

Consider the following example of conditional

restriction. C [[�t.contains(s)]]π where π = {t ←−
DFA("neutral(IEMI123)+") = a3, s ←−
DFA("IEMI123") = a2}. π is the abstract store that

associates t with the DFA that accepts the regular

expression "neutral(IEMI123)+" and s with the DFA
that accepts the regular expression "IEMI123".

C [[�t.contains(s)]]π
= 〈A [[t]] complement(concat(1, a2,1))π

A [[s]] complement(substrings(a3))π〉

= π[t ←− π(t) � complement(concat(1, a2,1))]

π[s ←− π(s) � complement(substrings(a3))]

= {t ←− 0, s ←− 0}
Our analysis propagates λv.0 to the instructions of the true

branch. The value propagated to the false branch is

π′ = C [[t.contains(s)]] π, the result of restricting the

negation of the boolean expression against the incoming

abstract store π which is π since the regular expression of

t always contains s.

VI. ABSTRACT OPERATIONS FOR STRING ANALYSIS

Our string analysis builds on Vasco [17], a framework

for implementing inter-procedural dataflow analysis of Java

programs. We used a modified version of the framework. We

implemented branch-sensitivity and used context-sensitivity

based on data flow values, finite state machines in our case.

Our string analysis is context-sensitive, which means that it is

able to distinguish between the different function calls at the

different call locations by tagging them with a calling context,

a key that differentiates between the entries that correspond

to the different call sites. The joining at merge points is

performed by taking this context into account, and merging is

performed for the data values by context rather than merging of

all the data values regardless of which context they originated

from.

String operations are given an abstract meaning as finite

state machine transformers. Given that the lattice of DFAs

has an infinite height, the widening technique proposed by

[3] to safely approximate infinite string values generated in

a loop is used to guarantee the convergence of the analysis.

We use the replace operator proposed in [3]. Unlike JSA,

the replace operator from [3] operates on finite state

machines as well as string literals. Our implementation of the

substring transducer builds on the algorithm presented in

[18]. With DFA abstractions, abstract string concatenation is

just the concatenation of two DFAs.

A. Abstract Substring Operation

The abstract substring operation from [18] performs a

breadth-first traversal of the state nodes constituting the DFA

and disregards the states that are reachable before the starting

index and those that are reachable after the end index. A new

initial and a new final state are added to the original machine.

An epsilon transition is created from the initial state to every

state reachable in start index steps. An epsilon transition is

created from any state reachable in end index steps to the

accepting state. If a final state is reached while looking for

states reachable in start index steps, the initial state is made

accepting and the empty string is accepted. If a final state is

reached while looking for sates reachable in end index steps,

the DFA accepts words whose length is less than the end

index and that final state is kept as accepting in the resulting

machine. The resulting state machine is then converted into

an equivalent DFA.

The abstract insert operation functions in a similar

manner and performs a breadth-first traversal of the state nodes

of the DFA till it reaches those nodes that are reachable in start

index steps. For each state reachable in start index steps an

epsilon transition is added to the initial state of the DFA to be

inserted and another epsilon transition is added form the final

states of the DFA to that state. Only the final states of the host

DFA are kept. The resulting state machine is then converted

into an equivalent DFA.

B. Abstract Replace Operation
The abstract string replace from [3]

replace(M1,M2,M3), consists of detecting every path

in M1 that accepts any word from L(M2) and replace that

path by a copy of M3. The algorithm operates in three stages.

The first stage transforms M1 into a machine M ′
1 that accepts

words that are obtained from inserting pairs of separators

into words from L(M1). The second step transforms M2

into a machine M ′
2 that accepts the concatenation of words

from M2 and words that do not contains words from M2 as

substrings where the pairs of the same separators are used to

delimit the two types of words. The last stage operates on the

intersection of M ′
1 and M ′

2 and consists of detecting every

path that accepts any word from M2, which are the paths

delimited by the separator, and replace that path by a copy of

M3.

To better understand the algorithm, consider the case where

we want to replace every occurrence of numerals in the regular

expression e1 ="[a-z][ a-z,0-9]*" with the replace

string "***". The regular expression e1 corresponds with the

finite state machine presented in Fig.2. The output of the first

transformation phase is M ′
1 shown in Fig.3. The separator
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q0start q1

[a− z]

[a− z, 0− 9]

Fig. 2 Finite State Machine 1

q′0 q′1

q0start q1

[a− z]

[a− z]

[a− z, 0− 9]

[a− z, 0− 9]

## ##

Fig. 3 Finite State Machine 2

character we used was #, the pound sign. The output of the

second phase is shown in Fig.4. The machine accepts words

where the numerals are delimited by the separator characters.

The last stage detects the paths delimited by the separator

character and replaces them with M2. The final machine

returned by the replace operation is shown in Fig.5.

C. Widening

When the state domain satisfies the ascending chain

property, the iterative approach for finding the least fixpoint

solution of the data flow problem is guaranteed to converge

in a finite number of steps. The least upper bound operator

applies on merge points and a convergence test is used to

check whether an additional iteration is still required. These

two operators are enough in this case. In the case of a state

domain with an infinite lattice, convergence is not guaranteed

to be reached in a finite number of steps. It is where the

widening operator is needed. Like the least upper bound a

widening operation is an over-approximation of the original

values. A widening operation results in a much broader

over-approximation that results in a faster convergence. In

order for the widening operation to be useful and not cause

the analysis to lose information each time itâĂŹs applied, the

over-approximation has to be constructed in a clever manner.

q1start q2 q′1 q′2

[a− z]
[a− z]

# [0− 9]

[0− 9]

#

Fig. 4 Finite State Machine 3

q1start q2 q3 q4 q5 q6

[a− z]
[a− z]

ε ∗ ∗ ∗

ε

Fig. 5 Finite State Machine 4

We unraveled loops k times, applying the least upper bound

operator on back edges till either convergence is achieved

or the upper limit k is reached. If after the kth iteration

the convergence is still not achieved, we apply the widening

operation.

The widening operator � was initially defined for arithmetic

operations and later applied to DFAs in [3]. The widening of

two finite state machines consists of defining an equivalence

relation between the states of the two machines, where two

states are equivalent iff for any word w from Σ∗ both machines

transit into an accepting state starting from these two states.

The states of the resulting machine are the sets of equivalence

classes. The initial state is the class that contains the initial

states. The final states are equivalence classes that contain at

least a final state and the transfer function is built from the

initial transfer functions to transit from one equivalence class

Ci to another equivalence class Cj on a given symbol iff the

original transfer functions transit on any state from Ci to any

state in Cj on that symbol.

L (M1�M2) � L (M1) 
 L (M2)

VII. EXPERIMENTAL RESULTS

We combine our string model with existing static analyzers.

The resulting product was used to improve the precision of the

analyzer. It was also used to produce new analyses. We used

our string model to improve the precision of taint analysis and

to detect command injection attacks in Android programs.

We test our model on applications from different

benchmarks [19], [20] and [21]. We also developed a

set of custom benchmarks [22] specifically designed to

showcase the benefits of an accurate model of string

operations and their effect on the string variables of

the program. Each of the benchmark apps embodies

a common scenario of application development where

operations such as string.replace, string.concat,

string.substring and string.insert are used to

manipulate the string variables. Conditional expressions

such as string.contains, string.startsWith,

string.endsWith are used to restrict the incoming

abstract storeâĂŹs string variables so that it satisfies the

conditional expression, potentially flagging it as unreachable

when no such restriction was possible. The goal of the test

was to accurately determine if the statement designated as

sink was reachable, or if it belonged to an infeasible path,

when the incoming abstract store at the entry of the sink

is flagged as unreachable. A false positive occurs when the

analysis assumes that the statement is reachable, when in fact

it is not.

We ran our experiments on a Windows machine with a

2.6GHz Intel Core i5 processor and 8GB of RAM. The

total number of expected unreachable sinks across all the

benchmark apps was 31. Our analyzer reported exactly 31

infeasible paths. The average run-time the analyzer took to

analyze a benchmark was 837.23ms.

Our experimental results are summarized in Table 1. The

column under Avg runtime shows the average run-time in
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TABLE I
EXPERIMENTAL RESULTS

Benchmark (# of apps, LOC) Avg runtime(ms) % Time op # IS # FP Memory (MB)
op time

replace 9.69%
substring 1%

TASA (64, 1500) 837.23 insert 1% 31 0 75
contains 35.91%
startsWith 31.05%
endsWith 21.72%

milliseconds that the string analyzer took to complete a

benchmark app. The columns under % Time op shows the

percentage of the ration of the analysis time of that string

operation to the total string analysis time. The column under

#IS shows the total number of unreachable sinks reported by

the tool. The column under #FP record the number of false

positives reported by the tool. The column under Memory

records the memory consumption reported by the tool in MB.

VIII. CONCLUSION

Static analysis of library method invocation can be

impossible to achieve at times because some libraries are

not entirely written in Java. As such, the need exists for an

intelligent model that approximates the behavior of library

method invocations to improve the precision of analysis. We

build a model of string operations based on DFAs and we use

it as a building block in other analyses. The information made

available by the product of the two analyses was useful at

improving the precision of the analyzer. Our model proves to

be very efficient at detecting when a given statement, enclosed

in an unrealizable conditional expression, was unreachable;

specifically when the abstract store could not be restricted in

a way that satisfies the condition.
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