
 

 

 
Abstract—The control over delivered iron ore blend 

characteristics is one of the most important aspects of the mining 
business. The iron ore price is a function of its composition, which is 
the outcome of the beneficiation process. So, end-to-end integrated 
planning of mine operations can reduce risks of penalties on the iron 
ore price. In a standard iron mining company, the production chain is 
composed of mining, ore beneficiation, and client supply. When mine 
planning and client supply decisions are made uncoordinated, the 
beneficiation plant struggles to deliver the best blend possible. 
Technological improvements in several fields allowed bridging the 
gap between departments and boosting integrated decision-making 
processes. Clusterization and classification algorithms over historical 
production data generate reasonable previsions for quality and 
volume of iron ore produced for each pile of run-of-mine (ROM) 
processed. Mathematical modeling can use those deterministic 
relations to propose iron ore blends that better-fit specifications 
within a delivery schedule. Additionally, a model capable of 
representing the whole production chain can clearly compare the 
overall impact of different decisions in the process. This study shows 
how flexibilization combined with a planning optimization model 
between the mine and the ore beneficiation processes can reduce risks 
of out of specification deliveries. The model capabilities are 
illustrated on a hypothetical iron ore mine with magnetic separation 
process. Finally, this study shows ways of cost reduction or profit 
increase by optimizing process indicators across the production chain 
and integrating the different plannings with the sales decisions. 
 

Keywords—Clusterization and classification algorithms, 
integrated planning, optimization, mathematical modeling, penalty 
minimization. 

I. INTRODUCTION 

HE iron ore global trade market is characterized by a mix 
of long-term contracts and spot sales, following pricing 

criteria that impose penalties and bonuses based on the ore's 
chemical composition. Due to those characteristics, it is very 
common to find iron mining companies that value a stable 
production pace and ore composition. 

The first step in the iron ore production process is the 
extraction of minerals from the mine. This ROM is extracted 
simultaneously in several spots of the site, following the mine 
planning schedule, and it usually contains low iron content 
and high impurity proportion. Those materials are blended and 
sent to the beneficiation plant to increase its value. 
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Beneficiation plants are mainly operated using standard 
parameterization independently of the ROM's characteristics 
being processed, or iron ore chemical targets. Some 
operational adjustments like grinding velocity, magnetic field 
intensity, or floating agent blend could be made to control 
some process indicators. However, adapting equipment is not 
a common practice because coordinating adjustments with 
shift changes and ROM's input queue requires close attention 
by management, extra costs, and especially, a change of 
mindset. 

In addition to processing the ore, it is also the plant's 
responsibility to guarantee the quality and volume of the 
product shipped to the client. An iron ore beneficiation plant 
usually produces multiple qualities, in different volumes and 
chemical characteristics, within its process chain. These 
qualities are then blended to a final product and shipped to the 
market, hopefully within the specifications stated by the 
contract. 

The production pace and quality of the produced iron ore in 
the beneficiation plant are highly dependent on the input ROM 
characteristics. Applying machine learning techniques to 
production data can generate key insights to shape mine and 
beneficiation plant's tactical and operational strategies. Indeed, 
knowing the impacts of the ROM blend into the downstream 
production in advance allows for predictive rather than 
reactive decision making. 

This study shows the techno-economic impacts of a multi-
period integrated mine plant model using as leverages:  
 the best way of consuming the ROM piles, 
 adjustments of some process variables, 
 stock level management, 
 the best blending strategy to ensure the quality of the 

delivered products, 
 the contracts selection based on their profit contribution. 

This paper describes the usual operation of an integrated 
mine plant in Section ‘Contextualization’. Section ‘Integrated 
planning’ is dedicated to detailing the methodology proposed 
to improve the plant's decision-making process. Section 
‘Optimal Planning’ shows the results of applying the methods 
from the last section for the context of the mine. Section 
‘Additional Analyses’ expand the benefits of the integrated 
model. Section ‘Improvements’ proposes ideas to include in 
the modeling of integrated mining plants. Section 
‘Conclusion’ summarizes the findings of this study. 

II. CONTEXTUALIZATION 

This study uses a generic iron mine with a beneficiation 
plant equipped with magnetic separators. The plant generates 
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three types of iron ores sub-products, named here as 
Nonmagnetic (NMAG), Magnetic (MAG), and Concentrate 
(CON). Both NMAG and MAG are generated in the earlier 
stages of the beneficiation process; while CON is produced 
downstream by processing the fine ores of upstream (the 
plant's mass flow is available in Appendix A). They can be 
sold separately or blended in different proportions to meet 
different qualities specifications. The production rate and 
composition of each sub-product vary in function of the 
lithology of ROM being fed to the plant (Table I). 

 
TABLE I 

SUB-PRODUCT PRODUCTION RATE AND COMPOSITION RANGE 

Sub-product Range Rate (t/h) Fe (%) SiO2 (%) 

MAG Max 135.18 64.5 6 

 Min 107.64 62.5 8.5 

NMAG Max 141.28 60 7 

 Min 90.12 57 10.5 

CON Max 192.5 66.5 3.5 

 Min 179 65 5.5 

 

Let's assume that the ROM consumption is not driven by 
any process or delivery coordinated decision-making strategy 
but by other aspects, like pile formation order, or logistics 
considerations. It could also be that all the ROM is blended in 
a unique homogenization pile. In any case, we will arbitrarily 
consider that the weekly consumption of ROM follows the 
same distribution as the monthly availability of each lithology. 
The operational planning is divided into 21 sequential time 
slots, where the first 12 represent weeks (W1 to W12) and the 
last 9 represent months (M4 to M12). Each week has 28 shifts 
of 6 hours and one of those is exclusive for maintenance. 

The plant supplies three clients, classified as High Quality 
(HQ), Medium Quality (MQ), and Low Quality (LQ), with 
custom products to be delivered in specific amounts every 
month (Table II). The sub-products stocked at the train 
terminal are blended and loaded to satisfy both the chemical 
specifications and period demand mass. The delivery of a 
product out of specification is avoided at all times. 

 
TABLE II 

CLIENT’S PRODUCT SPECIFICATION 

Client 
Min/Max demand 

(kt/month) 
Min Fe 

(%) 
Max SiO2 

(%) 
Min/Max load 

(kt/train) 

MQ 37.8 / 46.8 62.5 6 13.5 / 15 

LQ 50.5 / 61.6 59.5 8.8 13.5 / 15 

HQ 151.2 / 184.8 63.5 5.5 14 / 15 

 
Given those guidelines and the availability of ROM 

described in Table III, the plant can schedule its trains to 
better supply its clients. However, even with flexibility in the 
delivery, some trains are loaded with products out of 
specification, as shown in Fig. 1. This behavior is very 
common as most mines operate near its blending capabilities 
when balancing the volume and quality of the clients' 
demands. In this specific case, at month 1, one out of the three 
trains delivered to client MQ (2.8% of overall supply) has 
exceeded the SiO2 content by 0.22%. Also, at month 3, four 
out of the eleven trains delivered to HQ client (3% of overall 

supply) have exceeded the SiO2 content by 0.31%. 
 

TABLE III 
ROM’S AVAILABILITY 

Month Availability (kt) 

1 564 

2 571 

3 572 

4 to 12 560 

 

 
Fig. 1 Train delivery schedule and classification (white = no delivery, 

grey = delivered within specification, black = delivered out of 
specification) 

 

The revenue of the mining company depends on the price of 
the iron ore product delivered to the client at the period (Table 
IV). Prices are based on the Value-in-use differentials 
assessments made by [6], that consider bonuses and penalties 
in function of iron and impurities content (SiO2, Al2O3, and P). 
Notice that in this study we will be focusing on Fe and SiO2 
content. Nevertheless, the methodology can be applied to any 
traced compound. 

 
TABLE IV 

EXPECTED IRON ORE PRICE PER WMTA 

Month MQ (R$/WMT) LQ (R$/WMT) HQ (R$/WMT) 

Month 1 258.37 200.37 384.05 

Month 2 279.88 211.85 406.5 

Month 3 318.73 225.48 432.18 

Months 4-6 320.31 231.86 444.39 

Months 7-9 320.31 231.86 444.39 

Months 10-12 320.31 231.86 444.39 
aWMT = wet metric ton. 

III. INTEGRATED PLANNING 

There are several alternatives to boost the decision-making 
process over the end-to-end operations of a mining plant. This 
section is dedicated to describing the combination of 
techniques applied in this study: ROM clustering and 
classification, and mathematical programming. 

A. ROM Clustering and Classification 

This study proposes a combination of clustering and logistic 
classification techniques in order to predict the results of the 
beneficiation process. The clustering is first used to define 
groups of ROMs that yield similar composition for a given 
product. Then a logistic regression model is used to predict the 
group of a given ROM for each type of product based on its 
lithology. 

Cluster analysis is a set of techniques to derive a partition in 
a set of elements so that elements in the same group are 
similar, and elements in different groups are heterogeneous 
with respect to a given set of variables. The k-means technique 
used in this study was first introduced in [1] and has been 
widely used. The procedure aims to find, in an iterative 
manner, k centroids representing the mean values of each 
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cluster, and assign each element to the cluster with the nearest 
centroid. The notion of distance is based on the Euclidean 
distance in the feature space. Some examples of successfully 
applying this technique in geochemistry are presented in [2] 
and [3]. 

In this study, we apply the k-means technique to group piles 
of ROM based on the beneficiation product total Fe and SiO2 
composition and the production pace. The data are normalized 
before applying the algorithm that uses one hundred random 
initializations to avoid local minima. 

For predicting the group of a given ROM for a given 
product a logistic regression based on the lithology proportion 
is used. Logistic regression is a commonly used classification 
technique for both binary and multinomial classification. In 
the binary case the following regression equation is fitted in 
the training process: 

 

𝑃 ∑  (1) 

 
where P = Value representing the probability that the pile 
belongs to one of the two classes. LITi = Value of the 
lithology for the pile i. bi = Value of the weight related to the 
lithology i. b0 = Bias. 

Classifying an element can be done by choosing the group 
with the highest probability. The logistics regression technique 
as we use in this study was developed throughout many years 
in incremental steps. A detailed history can be found in [4]. 

The application of those techniques over the mine's orebody 
has produced three classifications for the mine's ROM (A, B, 
and C) found in Table V. This allows for the pit planning and 
beneficiation plant to coordinate the ROM pile formation and 
consumption, estimating in advance the pace and qualities 
generated in the iron ore treatment process. 

 
TABLE V 

SUB-PRODUCT PRODUCTION RATE AND COMPOSITION PER ROM 

Sub-product ROM Rate (t/h) Fe (%) SiO2 (%) 

MAG A 132.45 64.5 6 

 B 135.18 64 6.5 

 C 107.64 62.5 8.5 

NMAG A 141.28 60 7 

 B 90.12 58 9.5 

 C 115.92 57 10.5 

CON A 192.5 65.5 4.5 

 B 181 66.5 3.5 

 C 179 65 5.5 

B. Mathematical Programming  

Different methods and techniques exist in the field of 
Operations Research to enable problem-solving considering 
their peculiarities. For the scope of this study, it was selected 
to use mathematical programming. It can be defined as a 
method whose goal is to minimize or maximize a particular 
objective function, seeking an optimal solution, changing the 
value of defined variables within a viable set that respects a 
group of constraints.  

Mathematical programming has been widely used to 
describe and solve production planning problems. Reference 

[5] defines production planning as the planning of the 
resources required to perform transformation steps, in order to 
satisfy the customers most efficiently or economically. In 
other words, the production decisions are typically taken by 
looking at the best trade-off between financial objectives and 
customer service or satisfaction objectives. In production 
planning and operations management, the financial objectives 
are usually represented by production costs – for machines, 
materials, manpower, startup costs, overhead costs, etc. – and 
inventory costs – opportunity costs of the capital tied up in the 
stocks, insurances, etc. –. Customer service objectives are 
represented by the ability to deliver the right product, in 
ordered quantity, at the promised date and place. Using 
mathematical programming, all these elements can be 
modeled with variables, parameters, constraints and objectives 
functions, allowing planners to optimize their decisions. 

Although many models can be created to represent the 
decision-making process of the mine, this study has chosen to 
use a deterministic model with linear constraints (e.g.: mass 
balances and operating times) combined with variables that 
assume real (e.g., sub-product generation per period) or 
integer values (e.g., number of trains delivered to client). 
Those characteristics allow a solver to apply techniques for 
finding solutions, such as the Branch-and-Bound method. 

The objective function is defined as the maximization of the 
profit subtracted by a penalty. The penalty is large enough to 
outweigh the profit in absolute values when there are 
deliveries out of specification. 

IV. OPTIMAL PLANNING 

Optimal planning is found by solving the model, 
considering the classification of ROM and the other 
parameters described in the Contextualization section. This 
solution has found an operating planning that ensures all 
deliveries within clients' specifications, as shown in Fig. 2. 
Furthermore, it shows the possibility of increasing the 
deliveries of LQ and HQ contracts, by 8.11% and 0.74% 
respectively. The extra deliveries correspond to a 2.2% 
increase in profits. 

 

 

Fig. 2 Train delivery schedule and classification in optimal planning 
(white = no delivery, grey = delivered in the specification, black = 

delivered out of specification) 
 

The main driver for this solution is the better utilization of 
ROM. The plant has benefited from the possibility of choosing 
which ROM to treat each week, reducing the overall inflow 
mass to the plant. Fig. 3 shows the comparison of ROM type 
consumption proportion per period between the optimal 
planning and the contextualization case. Other results are 
available in Table VI. 
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Fig. 3 Proportion of clustered ROM processed in the first 12 weeks 
 

TABLE VI 
COMPARISON BETWEEN UNOPTIMIZED AND OPTIMIZED CASES 

Variable Indexes Unit Unoptimized Optimized 

SiO2 content out 
of specification 

W1 MQ % 0.22 
0.00 

W12 HQ % 0.31 
The proportion 

of trains 
delivered out of 

specification 

MQ % 2.78 

0.00 
HQ % 3.03 

ROM 
consumption 

Month 1 kt 538.13 536.73 

Month 2 kt 536.02 534.64 

Month 3 kt 539.02 537.72 

Month 4 kt 537.89 536.38 

Month 5 kt 537.24 535.77 

Month 6 kt 537.46 535.97 

Month 7 kt 540.47 539.16 

Month 8 kt 538.68 537.28 

Month 9 kt 537.89 536.38 

Month 10 kt 538.03 536.67 

Month 11 kt 538.46 537.08 

Month 12 kt 538.56 537.11 

V. ADDITIONAL ANALYSES 

The benefits of using an end-to-end integrated decision 
support system are expended when analyzing two scenarios: 
process setup definition and contracts selection. 

The two analyses are performed on top of the optimized 
scenario presented in the previous section. 

A. Process Setup Definition 

All processes are composed of a group of machines in the 
beneficiation plant. Those machines operate using a 
predefined configuration, for instance, a crushing velocity in 
the crusher or a specific reagent consumption in froth 
flotation. Usually, a single configuration is used although 
there are a set of options, each one impacting the production in 

its own way.  
This case introduces an alternative setup for the Process I, 

which is allowed for the treatment of ROM type C. This setup 
has a higher generation of MAG and a lower generation of 
NMAG, resulting in a lesser sub-product production rate in 
comparison with the standard setup, as seen in Fig. 4. 

 

 

Fig. 4 Production rate (t/h) of MAG and NMAG per setup 
 

After solving the model considering this possibility, the 
mine has benefited by using the alternative setup in a small 
proportion of the shifts (Fig. 5). The sub-product lower 
generation is compensated by an increase of the mean quality 
of the production, allowing for better utilization of lower 
quality sub-products. Additionally, the model was able to 
deliver more products to HQ which increased the profit 
increase of 0.22%. Extra details can be found in Table VII. 

Such alternative operative modes could be investigated at 
each step of the process, multiplying the economic benefits of 
this optimization. 

 

 

Fig. 5 Number of shifts per setup for ROM C treatment 

B. Contract Selection 

Salesforce teams usually have limited information regarding 
the operational challenges during the production while the 
industrial engineering team has low access to contractually 
defined product prices. That incoordination regarding what 
type of product is more suitable can be eliminated by using the 
model as a mediator. In this case, it is imagined that the 
contracts with MQ (starting at month 10, defined as MQ-B) 
and LQ (starting at month 7, defined as LQ-B) are in 
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discussion to be renewed, and two new contracts (LQ-C and 
HQ-B) are possible to be signed. The first new contract has 
the same chemical specifications and prices as LQ, with a 
maximum demand of 100 kt from months 6 to 12. The second 
has the same chemical specifications and prices as HQ, with a 
maximum demand of 100 kt from months 6 to 12. All 
contracts up to debate have no minimum demand.  

 
TABLE VII 

COMPARISON WITH AND WITHOUT ALTERNATIVE SETUP  
Variable Index Unit Without 

alternative 
setup 

With 
alternative 

setup 
Blended 

mass 
loaded  

to contract 

MQ kt 486.00 486.00 

LQ kt 720.00 720.00 

HQ kt 1917.47 1921.30 

NMAG C 
mass in 
stock 

W1 kt 39.59 39.40 

M12 kt 138.20 50.80 

Mass of 
ROM used 

 

M1 kt 536.73 538.20 

M2 kt 534.64 535.99 

M3 kt 537.72 539.17 

M4 kt 536.38 537.95 

M5 kt 535.77 537.27 

M6 kt 535.97 537.49 

M7 kt 539.16 540.61 

M8 kt 537.28 538.77 

M9 kt 536.38 537.95 

M10 kt 536.67 538.09 

M11 kt 537.08 538.54 

M12 kt 537.11 538.64 

Sub-
product 

masses in 
product 
blends 

 

CON A kt 518.71 518.71 

CON B kt 302.00 302.00 

CON C kt 610.91 610.91 

MAG A kt 356.75 356.75 

MAG B kt 224.72 224.72 

MAG C kt 365.84 375.41 

NMAG A kt 380.53 380.53 

NMAG B kt 149.81 149.81 

NMAG C kt 214.21 208.47 

 
TABLE VIII 

COMPARISON OF DELIVERED PRODUCT MASS 

Clients Contracts Cases Unit 
W1-
M6 

M7-
M9 

M10 - 
M12 

MQ 

1 
Renewal kt 364.50 - 

Optimized kt 364.50 - 

1B 
Renewal kt - - 121.50 

Optimized kt - - 0.00 

LQ 

2 
Renewal kt 360.00 - - 

Optimized kt 351.23 - - 

2B 
Renewal kt - 360.00 

Optimized kt - 360.00 

2C 
Renewal kt - - 

Optimized kt - 100.00 

HQ 

3 
Renewal kt 1917.47 

Optimized kt 1919.55 

3B 
Renewal kt - 

Optimized kt - 0.00 74.77 

Renewal = Renewal of current contracts; Optimized = optimizing the 
contract selection. 

 

The comparison of this case with the optimal planning has 
shown that, due to market prices, the blend of high and low-
quality sub-products to produce the MQ products is 
diminishing the profits. 

In the 7th month, the model has the first option to choose 
the next contracts to supply between LQ-B, LQ-C, and HQ-B. 
It decides to select the LQ contracts from that point on. The 
second decision regarding contracts occurs in the 10th month, 
where it now faces the decision to renew the MQ-B or to 
supply for HQ-B. And the model has identified that it is more 
profitable to supply the HQ contract. The delivered masses in 
both cases are detailed in Table VIII. 

The drop of MQ-B and subsequent supply of LQ-B, LQ-C, 
and HQ-B has increased the profit by 1.88% (Table IX). 

 
TABLE IX 

COMPARISON OF MAIN INDICATORS 

Variable Index Unit Renewal Optimized 

Economics Profit MR$ 877.48 893.98 
Blended 

mass 
loaded 

 to contract 

MQ kt 486.00 364.50 

LQ kt 720 811.23 

HQ kt 1917.47 1994.32 

Renewal=Renewal of current contracts; Optimized=optimizing the contract 
selection 

VI. IMPROVEMENTS 

The introduction of product dynamic pricing to an end-to-
end integrated planning is the natural next step for a support 
decision model. Although the shift from mixed-integer 
programming to non-linear programming could correspond to 
a simplification of the train loading (allowing for rational 
numbers), this implementation can better analyze the 
economic trade-off of delivering products out of specifications 
or in premium qualities following Platts. 

Additionally, the list of specifications per sub-product could 
be extended to add more compounds (P, Al2O3) and physical 
properties (like granulometry). Therefore, the choice of 
compounds and physical properties to be included in the 
model should follow the relevance of each in the mines’ 
decisions. Every inclusion of compounds or quality in the 
scope can also significantly increase the complexity of the 
mathematical program. The increase that list implicates in 
more restrictive blends which a model is more capable of 
dealing with. 

VII. CONCLUSION 

The predictability provided by combining clustering and 
classification technics to the throughput of a mining 
production plant incorporated with flexible processing ROM 
selection, dynamic blending recipes and determination of train 
loading schedule generates many possible production 
scenarios. Applying it as input to an end-to-end integrated 
planning mathematical program, as proposed in this study, has 
potentially increased profits and reduced penalties of a mining 
company.  

The model used was capable to support the decision-making 
process throughout the iron ore chain, proposing the optimal 
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configuration per process and contract selection. 

APPENDIX 

 
Fig. 6 Plant’s mass flow 
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