The Performance and the Induced Rebar Corrosion of Acrylic Resins for Injection Systems in Concrete Structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32804
The Performance and the Induced Rebar Corrosion of Acrylic Resins for Injection Systems in Concrete Structures

Authors: C. S. Paglia, E. Pesenti, A. Krattiger

Abstract:

Commercially available methacrylate and acrylamide-based acrylic resins for injection in concrete systems have been tested with respect to the sealing performance and the rebar corrosion. Among the different resins, a methacrylate-based type of acrylic resin significantly inhibited the rebar corrosion. This was mainly caused by the relatively high pH of the resin and the resin aqueous solution. This resin also exhibited a relatively high sealing performance, in particular after exposing the resin to durability tests. The corrosion inhibition behaviour and the sealing properties after the exposition to durability tests were maintained up to one year. The other resins either promoted the corrosion of the rebar and/or exhibited relatively low sealing properties.

Keywords: Acrylic resin, sealing performance, rebar corrosion, concrete injection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 380

References:


[1] Neville A. M. (2008), Properties of Concrete, Paperback, pp. 844.
[2] Pincheira, J. A. and Dorshorst, M. A. (2005), Evaluation of Concrete Deck and Crack Sealers. Wisconsin Highway Research Program, Madison, WI, p. 47-55.
[3] Weyers, R. E., Drumm, R. O. and Zemajtis, J, (1995), "Service Lives of Concrete Sealers", Transportation Research Record, 1490, pp.54-59.
[4] Johnson K., French C., Reneson J. and Schultz A, (2009), Crack and Concrete Deck Sealant Performance. Report for the Minnesota Department of Transportation, pp. 88.
[5] DIN EN 480-14, (Entwurf 01.2005), Zusatzmittel für Beton, Mörtel und Einpressmörtel – Prüfverfahren; Bestimmung des Korrosionsfortschritts von Stahl in Beton, Elektrochemische Prüfung bei gleich bleibendem Potential.
[6] Harnisch J. (2006), Untersuchungen zum Korrosionsrisiko für die Stahlbewehrung durch Einsatz von Acrylatgel zur Rissverpressung in Stahlbeton, Institut für Bauforschung, 35. Aachener Baustofftag, Aachen: Institut für Bauforschung, RWTH Aachen, University - Forschungsbericht Nr. F 934.
[7] Jüling, (1999), Untersuchungsbericht UU/II 98 – 112, 2. Ausfertigung, Materialforschung-und Prüfungsanstalt für das Bauwesen, Leipzig e. V., pp. 9.
[8] Wiseman C. (2006), Corrosion potential monitoring, Report No. WB060730, Westmoreland Mechanical Testing & Research Ltd., Westmoreland Building, 5 Beaumont road, Beaumont Road Industrial estate, Banbury, Oxon OX16 1RH, U. K.
[9] EN 13687-3, 01.04. 2003, Products and Systems for the Protection and Repair of Concrete Structures – Test Methods – Determination of Thermal Compatibility, Thermal Cycling without De-icing Salt Impact.
[10] EN 12390-8, 01.06.2002, Testing Hardened Concrete, Depth of Penetration of Water under Pressure.