Electrochemical Response Transductions of Graphenated-Polyaniline Nanosensor for Environmental Anthracene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32799
Electrochemical Response Transductions of Graphenated-Polyaniline Nanosensor for Environmental Anthracene

Authors: O. Tovide, N. Jahed, N. Mohammed, C. E. Sunday, H. R. Makelane, R. F. Ajayi, K. M. Molapo, A. Tsegaye, M. Masikini, S. Mailu, A. Baleg, T. Waryo, P. G. Baker, E. I. Iwuoha

Abstract:

A graphenated–polyaniline (GR-PANI) nanocomposite sensor was constructed and used for the determination of anthracene. The direct electro-oxidation behavior of anthracene on the GR-PANI modified glassy carbon electrode (GCE) was used as the sensing principle. The results indicate thatthe response profile of the oxidation of anthracene on GR-PANI-modified GCE provides for the construction of sensor systems based onamperometric and potentiometric signal transductions. A dynamic linear range of 0.12- 100 µM anthracene and a detection limit of 0.044 µM anthracene were established for the sensor system.

Keywords: Electrochemical sensors, environmental pollutants, graphenated-polymers, polyaromatic hydrocarbon.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.3593114

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 682

References:


[1] V. Vestreng, H. Klein, Emission data reported to UNECE/EMEP: Quality assurance and trend analysis and presentation of WebDab, MSC-W Status Report, 2002.
[2] S. Xu, W. Liu, S. Tao, Emission of polycyclic aromatic hydrocarbons in China,Environ. Sci. Technol, vol. 40, pp. 702-708, 2006.
[3] A. Mastral, T. García, M. Callén, M. Navarro, J. Galbán, Removal of naphthalene, phenanthrene and pyrene by sorbents from hot gas, Environ. Sci. Technol, vol. 35, pp. 2395-2400, 2001.
[4] J. C. Fetzer, Large (C= 24) Polycyclic Aromatic Hydrocarbons: Wiley-Interscience: New York 2000.
[5] P. Plaza-Bolaños, A. G. Frenich, J. L. M. Vidal, Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends, J. Chromatogr. A, vol. 1217, pp. 6303-6326, 2010.
[6] C.-E. Boström, P. Gerde, A. Hanberg, B. Jernström, C. Johansson, T. Kyrklund, A. Rannug, M. Törnqvist, K. Victorin, R. Westerholm, Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air, Environ. Health Perspect., vol. 110, pp. 451-488, 2002.
[7] R. E. Bain, S. W. Gundry, J. A. Wright, H. Yang, S. Pedley, J. K. Bartram, Accounting for water quality in monitoring access to safe drinking-water as part of the millennium development goals: lessons from five countries, Bull. WHO, vol. 90, pp. 228-235, 2012.
[8] S. Bhadra, D. Khastgir, N. K. Singha, J. H. Lee, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci, vol. 34, pp. 783-810, 2009.
[9] M. Pumera, R. Scipioni, H. Iwai, T. Ohno, Y. Miyahara, M. Boero, A mechanism of adsorption of β‐nicotinamide adenine dinucleotide on graphene sheets: Experiment and theory, Chem. Eur. J., vol. 15, pp. 10851-10856, 2009.
[10] L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films, Adv. Funct. Mater., vol. 19, pp. 2782-2789, 2009.
[11] A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Mater., vol. 6, pp. 183-191, 2007.
[12] C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing,Biosens. Bioelectron., vol. 25, pp. 1070-1074, 2010.
[13] D. S. Patil, J. Shaikh, S. Pawar, R. Devan, Y. Ma, A. Moholkar, J. Kim, R. Kalubarme, C. Park, P. Patil, Investigations on silver/polyaniline electrodes for electrochemical supercapacitors, Phys. Chem. Chem. Phys., vol. 14, pp. 11886-11895, 2012.
[14] S. Virji, J. Huang, R. B. Kaner, B. H. Weiller, Polyaniline nanofiber gas sensors: examination of response mechanisms, Nano Lett., vol. 4, pp. 491-496, 2004.
[15] D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G. Q. Lu, H.-M. Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode, ACS Nano, vol. 3, pp. 1745-1752, 2009.
[16] K. Zhang, L. L. Zhang, X. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes, Chem.Mater., vol. 22, pp. 1392-1401, 2010.
[17] J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance, Carbon, vol. 48, pp. 487-493, 2010.
[18] C. Vallés, P. Jiménez, E. Muñoz, A. M. Benito, W. K. Maser, Simultaneous reduction of graphene oxide and polyaniline: doping-assisted formation of a solid-state charge-transfer complex, J. Phys. Chem. C, vol. 115, pp. 10468-10474, 2011.
[19] D. Li, M. B. Mueller, S. Gilje, R. B. Kaner, G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., vol. 3, pp. 101-105, 2008.
[20] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater., vol. 19, pp. 1987-1992, 2009.
[21] Y. G. Wang, H. Q. Li, Y. Y. Xia, Ordered whisker-like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Adv. Mater., vol. 18, pp. 2619-2623, 2006.
[22] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, vol. 45, pp. 1558-1565, 2007.
[23] G. Wang, S. Zhuo, W. Xing, Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells, Adv. Mater., vol. 69, pp. 27-29, 2012.
[24] A. A. Shah, R. Holze, Spectroelectrochemistry of two-layered composites of polyaniline and poly(o-aminophenol), Electrochim. Acta, vol. 53, pp. 4642-4653, 2008.
[25] E. I. Iwuoha, D. Saenz de Villaverde, N. P. Garcia, M. R. Smyth, J. M. Pingarron, Reactivities of organic phase biosensors. 2. The amperometric behavior of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film, Biosens. Bioelectron., vol. 12, pp. 749-761, 1997.
[26] A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications. Wiley New York, 1980.
[27] E. I. Iwuoha, S. E. Mavundla, V. S. Somerset, L. F. Petrik, M. J. Klink, M. Sekota, P. Bakers, Electrochemical and spectroscopic properties of fly ash–polyaniline matrix nanorod composites, Microchim. Acta, vol. 155, pp. 453-458, 2006.
[28] R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, Monitoring of cellular behavior by impedance measurements on interdigitated electrode structures, Biosens. Bioelectron., vol. 12, pp. 29-41, 1997.
[29] X. Kang, Z. Mai, X. Zou, P. Cai, J. Mo, A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes, Anal. Biochem., vol. 369, pp. 71-79, 2007.
[30] L. Wang, E. Wang, Direct electron transfer between cytochrome c and a gold nanoparticles modified electrode, Electrochem. Commun., vol. 6, pp. 49-54, 2004.
[31] W. Chen, L. Yan, P. R. Bangal, Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves, Carbon, vol. 48, pp. 1146-1152, 2010.
[32] J. Yin, X. Zhao, X. Xia, L. Xiang, Y. Qiao, Electrorheological fluids based on nano-fibrous polyaniline, Polym. J., vol. 49, pp. 4413-4419, 2008.
[33] C. M. Willemse, K. Tlhomelang, N. Jahed, P. G. Baker, E. I. Iwuoha, Metallo-graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions, Sensors, vol. 11, pp. 3970-3987, 2011.
[34] K. Subrahmanyam, S. Vivekchand, A. Govindaraj, C. Rao, A study of graphenes prepared by different methods: characterization, properties and solubilization, J. Mater. Chem., vol. 18, pp. 1517-1523, 2008.
[35] P. Bouvrette, S. Hrapovic, K. B. Male, J. H. Luong, Analysis of the 16 Environmental Protection Agency priority polycyclic aromatic hydrocarbons by high performance liquid chromatography-oxidized diamond film electrodes, J. Chromatogr. A, vol. 1103, pp. 248-256, 2006.
[36] J. Costa, A. Sant'Ana, P. Corio, M. Temperini, Chemical analysis of polycyclic aromatic hydrocarbons by surface-enhanced Raman spectroscopy, Talanta, vol. 70, pp. 1011-1016, 2006.
[37] C. A. Paddon, C. E. Banks, I. G. Davies, R. G. Compton, Oxidation of anthracene on platinum macro-and micro-electrodes: Sonoelectrochemical, cryoelectrochemical and sonocryoelectrochemical studies, Ultrason. Sonochem., vol. 13, pp. 126-132, 2006.
[38] D. S. Cordeiro, P. Corio, Electrochemical and photocatalytic reactions of polycyclic aromatic hydrocarbons investigated by raman spectroscopy, J. Braz. Chem. Soc., vol. 20, pp. 80-87, 2009.
[39] S. N. Mailu, T. T. Waryo, P. M. Ndangili, F. R. Ngece, A. A. Baleg, P. G. Baker, E. I. Iwuoha, Determination of anthracene on Ag-Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes, Sensors, vol. 10, pp. 9449-9465, 2010.
[40] N. G. Mathebe, A. Morrin, E. I. Iwuoha, Electrochemistry and scanning electron microscopy of polyaniline/peroxidase-based biosensor, Talanta, vol. 64, pp. 115-120, 2004.