Hairy Beggarticks (Bidens pilosa L. - Asteraceae) Control in Sunflower Fields Using Pre-Emergence Herbicides

Alexandre M. Brighenti

Abstract — One of the most damaging species in sunflower crops in Brazil is the hairy beggarticks (Bidens pilosa L.). The large number of seeds, the various vegetative cycles during the year, the staggered germination and the scarcity of selective and effective herbicides to control this weed in sunflower are some of attributes that hinder the effectiveness in controlling hairy beggarticks populations. The experiment was carried out with the objectives of evaluating the control of hairy beggarticks plants in sunflower crops, and to assess sunflower tolerance to residual herbicides. The treatments were as follows: S-metolachlor (1,200 and 2,400 g ai ha⁻¹), flumioxazin (60 and 120 g ai ha⁻¹), sulfentrazone (150 and 300 g ai ha⁻¹) and two controls (weed and weed-free check). Phytotoxicity on sunflower plants, percentage of control and density of hairy beggarticks plants, sunflower stand and plant height, head diameter, oil content and sunflower yield were evaluated. The herbicides flumioxazin and sulfentrazone were the most efficient in hairy beggarticks control. S-metolachlor provided acceptable control levels. S-metolachlor (1,200 g ha⁻¹), flumioxazin (60 g ha⁻¹) and sulfentrazone (150 g ha⁻¹) were the most selective doses for sunflower crop.

Keywords — Flumioxazin, Helianthus annuus, S-metolachlor, sulfentrazone, weeds.

I. INTRODUCTION

Bidens pilosa L., commonly known as hairy beggarticks, is one of the most prominent species in agricultural regions in South America. In Brazil, it occurs mainly in its Central South region [30].

The species is annual, herbaceous, and it has an erect stem, 40-120 cm high [24]. The inflorescences, also called heads, are formed by yellow flowers that originate seeds (achenes) [5]. Hairy beggarticks can produce 3,000 to 6,000 achenes per plant; therefore, three generations per year are common [4], [19]. Moreover, seed dormancy due to latency allows germination even after five years [19]. The two or three barbed awns at the end of the achenes are essential for spreading the species. It is an effective means of seed dispersal, as awns adhere to fur or clothing and are then transported by animals or humans.

Hairy beggarticks populations were confirmed as resistant to acetolactate synthase (ALS)-inhibiting herbicides [20], as well as to both ALS inhibitors and photosynthesis inhibiting herbicides [34]. Hairy beggarticks populations were also identified as resistant to paraquat [21] and glyphosate [1].

Bidens pilosa is considered to be one of the most problematic weed species in Brazilian sunflower fields [9]. The difficulty in controlling this species is also attributed to their similarities to sunflower. Both of them belong to the same family (Asteraceae), having morphological and physiological similarities. Generally, selective herbicides for sunflower do not have effective control of hairy beggarticks. In addition, the scarcity of effective sunflower herbicides to control broadleaf weeds has limited chemical weed management options in sunflower fields [8]. However, herbicides with residual effect are an effective practice in weed control in sunflower [35]. The dynamics of these herbicides in soils are influenced by a number of characteristics, such as type, texture, moisture content, organic matter and pH [17], [15]. Thus, studies of herbicide selectivity as a function of specific conditions are necessary to avoid toxicity on sunflower plants, and to obtain effective control of the main weed species.

The objectives of this study were to evaluate the control of hairy beggarticks plants in sunflower crops, and to assess sunflower tolerance to residual herbicides.

II. MATERIALS AND METHODS

A. Experimental Site

The experiment was carried in Coronel Pacheco township, Minas Gerais State, Brazil (21°32'55.60"S, 43°15'57.58" W). Soils of the experimental site are classified as Fluvic Cambisol. Chemical and textural profiles are as follows: pH (H₂O) = 5.1, P = 24.5 mg dm⁻³, K = 168 mg dm⁻³, Ca²⁺ = 3.7 cmol c dm⁻³, Mg²⁺ = 1.4 cmol c dm⁻³, CEC₀ = 5.7 cmol c dm⁻³, CEC (Tₜₚ = 7d) = 10.3 cmol c dm⁻³, V = 54%, organic matter concn. = 2.8 dag kg⁻¹, clay = 56%, silt = 35%, sand = 9%.

B. Experimental Design

A complete randomized block design with four replicates was chosen. The treatments were as follows: two doses of S-metolachlor (1,200 and 2,400 g ha⁻¹), two doses of flumioxazin (60 and 120 g ha⁻¹) and two doses of sulfentrazone (150 and 300 g ha⁻¹). Weedy check and weed-free check controls were also performed.

C. Field Experimentation

The experiment was started on May 30, 2016. The soil of the experimental area was plowed and barred and then hairy beggarticks seeds were distributed throughout the experimental area in the amount of 0.5 kg of seeds per 307 m².
The sunflower hybrid Paraíso 102 CL® (Clearfield®) was sown (0.8 m row spacing), keeping three seeds spaced 25 cm apart. Plots consisted of four rows, each 3 m long. Watering was performed weekly to a 15-mm water layer. Fertilizer at sowing was applied at 350 kg ha⁻¹ NPK (08-28-18). Plant thinning was carried out at ten days after sunflower emergence, keeping a crop stand of ca. 55,000 plants per hectare. Side-dressing was performed 18 days after sunflower emergence with 250 kg ha⁻¹ NPK (20-05-20) fertilizer. Boron (B) was applied in mix with the side-dressing fertilizer at 1.2 kg ha⁻¹ (boric acid - 17% B). Grass weeds were controlled using fluzifop-p-butyl at 125 g ha⁻¹. Broadleaf weeds, which escaped to the action of the herbicides, were manually eliminated. Herbicide treatments were applied in pre-emergence condition on June 2, 2016. A carbon dioxide (CO₂) backpack sprayer was used, calibrated to deliver a spraying volume equivalent to 160 L ha⁻¹.

D. Statistical Analysis

Phytotoxicity of herbicide treatments on sunflower and hairy beggarticks control were evaluated using a visual scale (0% to 100%) at 30 and 45 days after herbicide application (DAT). Zero values corresponded to no symptoms of phytotoxicity on sunflower plants or no hairy beggarticks control and 100% to complete sunflower death or complete weed control [33]. Density of hairy beggarticks was determined by counting hairy beggarticks plants within a square (0.5 x 0.5 m) at 35 DAT.

Sunflower plant stand was determined by counting the number of plants within the central two rows of each plot and then converted to plants per hectare. Averages of sunflower plant height and head diameter were obtained by measuring five plants from two central rows. The oil content was determined by nuclear magnetic resonance NMR equipment (Oxford, USA). The sunflower yield was obtained by harvesting two 3-m long rows of sunflower within the central area of the plots and subsequent transformation to kg ha⁻¹.

The percentage of phytotoxicity on sunflower plants and the hairy beggarticks control percentages were normalized by square root transformation of \((x + 1) \) to perform analysis of variance [28]. Mean values were compared by Scott-Knott test \((P \leq 0.05) \). Statistical analyses were performed using SAEG software [28].

III. RESULTS AND DISCUSSION

Treatments with S-metolachlor and sulfentrazone did not cause visual symptoms of phytotoxicity to sunflower plants (Table I).

Sulfentrazone was also applied under pre-emergence conditions of sunflower hybrid Morgan M-742 [11]. The applied herbicide dose was tolerated by sunflower, with low values of phytotoxicity at 20 DAT, and plant recovery at 30 DAT. The hybrid Helio 250 was also submitted to the application of sulfentrazone, likewise there were no apparent damages to sunflower growth and development [27].

Flumioxazin was the most phytotoxic herbicide. The percentage of injury reached 1.5% for the lowest dose at 30 DAT. Eventually, the plants recovered and this value declined to zero at 45 DAT. Flumioxazin (30 or 60 g ha⁻¹) was applied on sunflower plants at leaf stages between 2-4 days [23]. The authors considered percentages of phytotoxicity ranging from 17% to 24% as acceptable. This herbicide is highly adsorbed by organic matter and clay [2], and thus poorly leached [14]. Although flumioxazin remains adsorbed to organic matter and clays, it may be readily available in soil solution as a function of water availability [16]. Therefore, heavy rains after application can promote percolation, affecting seed germination. The highest applied dose of flumioxazin killed most (98%) sunflower plants. When flumioxazin was used in pre-emergence, the plant tissues were damaged by contact with the herbicide as seedlings emerge [25]. Post-emergence flumioxazin application also causes similar characteristic symptoms, notably tissue necrosis.

The employed doses of flumioxazin and sulfentrazone yielded the highest percentages of weed control, ranging from 95% to 100% at 45 DAT (Table I). In addition, these two herbicides considerably reduced the density of hairy beggarticks plants. The control of hairy beggarticks as function of flumioxazin applied in pre-sowing desiccation provided residual control of hairy beggarticks already at doses of 50 and 75 g ha⁻¹ [26]. In fact, this same herbicide was applied on sugar cane straw at 150 g ha⁻¹ in order to achieve satisfactory hairy beggarticks’ control (95% to 100%) [12].

S-metolachlor was not effective for hairy beggarticks control in sunflower crops, especially at the lowest dose. This herbicide is not registered for hairy beggarticks control in Brazil [29]. Despite not being allowed for hairy beggarticks control in Brazil, S-metolachlor at doses of 1.5 L ha⁻¹ to 7.5 L ha⁻¹ of the commercial product showed reductions in weed height [32]. S-metolachlor (1,680 g ha⁻¹) applied in pre-emergence of maize also presented acceptable control (71.5%) of hairy beggarticks at 28 days after emergence [13].

The mean values of crop stand, plant height, head diameter, oil content and sunflower yield are described on Table II. The lowest dose of S-metolachlor (1,200 g ha⁻¹) did not affect any of the measured variables and, as a result, did not affect sunflower productivity. In fact, S-metolachlor (1,440 g ha⁻¹) was applied on sunflower without detectable injuries, making it a potential alternative for weed control in pre-emergence conditions [27].

The highest dose of S-metolachlor (2,400 g ha⁻¹) reduced crop yields. This sheds light on the hypothesis that the selectivity of S-metolachlor in sunflower might be negatively correlated to herbicide concentration. In contrast, the adsorption of S-metolachlor in soils is positively correlated with organic matter and clay content [18], [36]. Thus, when it is applied in pre-emergence conditions, the herbicide concentrates on the soil surface, which accumulates most organic matter [6], [3]. High doses of S-metolachlor applied to sandy soils and low organic matter can cause phytotoxicity to sunflower [10]. In addition, the leaching potential of S-metolachlor is strictly correlated with rainfall [22]. High doses of S-metolachlor associated with irrigation water and rainfall may favor its leaching to deeper soil layers, thereby
decreasing crop productivity.

The herbicides flumioxazin and sulfentrazone were the most effective in controlling hairy beggarticks in sunflower fields. S-metolachlor provided acceptable control levels. S-metolachlor (1,200 g ha⁻¹), flumioxazin (60 g ha⁻¹) and sulfentrazone (150 g ha⁻¹) were the most selective herbicides.

ACKNOWLEDGMENT

The author wishes to acknowledge Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support.

REFERENCES

