Iterative Image Reconstruction for Sparse-View Computed Tomography via Total Variation Regularization and Dictionary Learning

XianYu Zhao, JinXu Guo

Abstract—Recently, low-dose computed tomography (CT) has become highly desirable due to increasing attention to the potential risks of excessive radiation. For low-dose CT imaging, ensuring image quality while reducing radiation dose is a major challenge. To facilitate low-dose CT imaging, we propose an improved statistical iterative reconstruction scheme based on the Penalized Weighted Least Squares (PWLS) standard combined with total variation (TV) minimization and sparse dictionary learning (DL) to improve reconstruction performance. We call this method "PWLS-TV-DL". In order to evaluate the PWLS-TV-DL method, we performed experiments on digital phantoms and physical phantoms, respectively. The experimental results show that our method is in image quality and calculation. The efficiency is superior to other methods, which confirms the potential of its low-dose CT imaging.

Keywords—Low dose computed tomography, penalized weighted least squares, total variation, dictionary learning.

I. INTRODUCTION

TODAY, X-ray CT provides clear information on the attenuation of X-rays in different tissues of the human body on a millimeter scale, thus providing rich information on human organ organization for the diagnosis and prevention of clinicians. CT has become one of the indispensable tools in the field of radiology diagnosis [1]. However, with the popularity of CT tomography in clinical diagnosis, the problem of radiation dose in CT scans has attracted more and more attention. This is because the dose of radiation in CT is accumulatively life, repeated CT scans significantly increase the probability of carcinogenesis. To reduce the radiation dose in CT examinations, various techniques have been extensively investigated. Among them, statistical iterative reconstruction (SIR) methods by modeling the measurement statistics and imaging geometry can significantly reduce radiation dose while maintaining image quality in various CT applications compared with the filtered back-projection (FBP) reconstruction algorithm [2].

In this paper, we have improved a low-dose CT statistical iterative reconstruction method. Our goal is to reconstruct a sufficiently fine image from a low-dose projection, reconstruct the intermediate image using TV minimization under the PWLS standard [3], and then use post-processing with sparse coding DL to remove residual noise and produce Clinically acceptable CT images. For simplicity, the present method is termed ‘PWLS-TV-DL’. The novelty of the PWLS-TV-DL is that, process through DL the reconstruct image could yield visually pleasant images with more continuous boundaries and less artifacts in smooth regions compared with the PWLS-TV. Qualitative and quantitative evaluations were carried out on the digital phantoms in terms of accuracy and resolution properties.

II. METHODS

A. PWLS Criteria for CT Image Reconstruction

The PWLS approach for iterative reconstruction of X-ray CT images has been studied by Herman and Sauer and Bouman [4]. On the basis of the noise properties of CT projection data, the PWLS criterion for CT image reconstruction can be rewritten as follows:

\[\mu^* = \arg \min_{\mu \geq 0} \{(x - H\mu)^T \Sigma^{-1} (x - H\mu) + \beta R(\mu)\} \]

where \(x \) represents the obtained sinogram data, \(x = (x_1, x_2, \ldots, x_N)^T \), \(\mu \) is the vector of attenuation coefficients to be reconstructed, i.e., \(\mu = (\mu_1, \mu_2, \ldots, \mu_N)^T \), and \(T \) denotes the matrix transpose. The operator \(H \) represents the system matrix with the size of \(M \times N \). The element of \(H \) is the length of the intersection of projection ray \(i \) with pixel \(j \). \(\Sigma \) is a diagonal matrix with the \(i \)th element of \(\sigma_i \) which is the variance of sinogram data \(x_i \). \(R(\mu) \) represents a prior term, and \(\beta \) is a hyper-parameter for controlling the strength of prior term as a penalty. The goal for CT image reconstruction is to estimate the attenuation coefficients \(\mu \) from the measurement \(y \) with \(H \).

Based on our previous works, in this study, the variance of \(\sigma_i^2 \) is determined by the following mean-variance relationship:

\[\sigma_i^2 = \frac{1}{I_0} \exp(\bar{x}_i)(\frac{1}{I_0} \exp(\bar{x}_i)(\sigma_s^2 - 1.25)) \]

where \(I_0 \) denotes the incident x-ray intensity, \(\bar{x}_i \) is the mean of the sinogram data at bin \(i \) and \(\sigma_s^2 \) is the background electronic noise variance.

B. TV Minimization

The TV was first proposed by Rudin in the image denoising model [5], which is used to measure image characteristics up to

XianYu Zhao is with the College of Information Engineering, Wuhan University of Technology, China (e-mail: 16864690309@163.com).
JinXu Guo is with the College of Information Engineering, Wuhan University of Technology and Key Laboratory of Fiber Optic Sensing Technology and Information Processing (Wuhan University of Technology), Ministry of Education, China.
The PWLS-TV-DL algorithm consists of PWLS reconstruction, TV minimization and DL. PWLS works as the reconstruction algorithm, both TV minimization and DL work as regularization terms. PWLS with TV minimization can reconstruct high quality CT images by sparse view measurement, but the real structure and image noise cannot be distinguished, causing some structures to be lost or distorted, and block artifacts are generated in the reconstructed image. Integrating TV and DL into the same frame to achieve a sparser representation of the signal, the introduction of adaptively learned dictionary alleviates the artifacts caused by the piecewise constant assumption and allows accurate restoration of images with complex structures.

The size of the gradient in TV minimization can be approximated as

$$\tau_{i,j} \approx \sqrt{(x_{ij} - x_{i-1,j})^2 + (x_{ij} - x_{i,j-1})^2}$$

The image TV can be defined as $||x||_{TV} = \sum_\Omega ||\nabla x||_{TV}$. The steepest descent direction is then defined by

$$\nabla_{x_{ij}}||x||_{TV} = \frac{\partial ||x||_{TV}}{\partial x_{ij}} \approx \frac{(x_{ij} - x_{i-1,j}) + (x_{ij} - x_{i,j-1})}{\tau_{i+1,j} + \epsilon} - \frac{1}{\tau_{i+1,j} + \epsilon} \frac{(x_{ij} - x_{i,j-1})}{\tau_{i,j} + \epsilon}$$

where ϵ is a positive number in the denominator. And TV minimization can be stated as follows:

$$x_k = x_{k-1} - \beta \cdot \Delta x \cdot \frac{||x_{k-1}||_{TV}}{||x_{k-1}||_{TV} - ||x_k||_{TV}}$$

where β is the length of each gradient-descent step and q is the iteration index.

In summary, the CT reconstruction problem can be stated as:

$$\min_{D_0, A} ||X - D_0 A||_F^2 \quad \text{subject to} \quad ||a_i||_0 \leq T$$

where X is the matrix of training samples, D_0 is the dictionary to be sought, and A is the sparse coefficient matrix in which Y is represented by D_0. $|| \cdot ||_F^2$ represents the square of the Frobenius norm, defined as the sum of the squares of each atom in the matrix.

When the sparse coefficient calculation is completed, the K-SVD algorithm begins to update the dictionary to further reduce the error. The update of the dictionary is updated one by one for each atom.

In summary, the CT reconstruction problem can be stated as:

$$\min_{x,a} ||x||_{TV} + \sum ||D_0 a_j - R_j x||_2^2 \quad \text{subject to} \quad ||a_j||_0 \leq \rho \forall j, x \geq 0, ||Mx - y||_2^2 < \varepsilon_a$$

where $||x||_{TV}$ is the TV norm of an image x, $||a_j||_0$ is the l_0 norm of a_j, ρ is the threshold of sparsity, M is a system matrix describing the forward projection, y is a measured dataset and ε_a is a small positive value representing the error threshold.

D. PWLS–TV–DL Algorithm

In this section, we will detail the implementation details of the PWLS-TV-DL algorithm.
The workflow for the PWLS–TV–DL algorithm is summarized in Table I.

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>WORKFLOW FOR PWLS-TV–DL ALGORITHM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input:</td>
<td>x_{o} - measured projections.</td>
</tr>
<tr>
<td>Output:</td>
<td>x - reconstructed image.</td>
</tr>
<tr>
<td>Parameters:</td>
<td>$\sqrt{n} \times \sqrt{n}$ - patch size, β - length of each gradient-descent step, k - iteration index, K - the maximum iteration number for main loop.</td>
</tr>
<tr>
<td>Main loop for $k = 1,2,...K$:</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Reconstruct an image by PWLS algorithm $\mu^* = \arg\min_{\mu} { (x - H\mu)^T \Sigma^{-1} (x - H\mu) + \beta R(\mu) }$</td>
</tr>
<tr>
<td>2.</td>
<td>TV-minimization loop</td>
</tr>
<tr>
<td>2.1.</td>
<td>Initialization: $\Delta x =</td>
</tr>
<tr>
<td>2.2.</td>
<td>TV gradient descent, for $k=1,2,...K$ $x_{k} = x_{k-1} - \beta \cdot \Delta x \cdot \frac{\nabla x_{k-1}}{</td>
</tr>
<tr>
<td>3.</td>
<td>For each patch R_{x} in the image,</td>
</tr>
<tr>
<td>(a)</td>
<td>find the set $D_{\alpha, \beta}$ of S nearest atoms in D_{α};</td>
</tr>
<tr>
<td>(b)</td>
<td>compute the weights using OMP so that $\frac{</td>
</tr>
<tr>
<td>(c)</td>
<td>estimate the image patch x_{i} as $x_{i+1} = D_{\omega_{x}} + \Sigma_{j} R_{x}^{T} R_{x_{j+1}}$;</td>
</tr>
<tr>
<td>4.</td>
<td>Update the image simultaneously;</td>
</tr>
<tr>
<td></td>
<td>Repeat beginning with Step 1 until the stopping criteria are satisfied.</td>
</tr>
</tbody>
</table>

III. EXPERIMENTS AND RESULTS

A. Experimental Setup

To evaluate the performance of the PWLS-TV-DL method in CT image reconstruction, we conducted experiments on the digital XCAT phantom.

B. Digital XCAT Phantom

Fig. 1 shows a slice of the XCAT phantom. We chose a geometry that was representative of a monoenergetic fan-beam CT scanner setup with a circular orbit to acquire 1160 projection views over 2π. The number of channels per view was 672. The distance from the detector arrays to the x-ray source was 1040 mm, and the distance from the rotation center to the x-ray source was 570 mm. The reconstructed images were composed of 512×512 square pixels. Each projection datum along an x-ray through the sectional image was calculated based on the known densities and intersection areas of the ray with the geometric shapes of the objects in the sectional image.

Similar to the previous studies (Wang et al., 2006) [6], we first simulated the noise-free sonogram data y then generated the noisy transmission measurement I according to the statistical model of the pre-logarithm projection data, that is,

$$y_{i} = \text{Poisson}(b_{i} \exp(-y)) + \text{Normal}(0, \sigma_{e}^{2}) \quad (12)$$

where b_{i} is the incident x-ray intensity and σ_{e}^{2} is the background electronic noise variance. In the simulation, b_{i} and σ_{e}^{2} were set to 1.0×10^{5} and 10.0 for low-dose scan simulation. Finally, the noisy sinogram data y were calculated by performing the logarithm transformation on the transmission data y_{i}. For the digital XCAT phantom experiment, the sparse-view projections were generated by under-sampling the 1,160 views of normal-dose simulation to only 360 views evenly over 2π.

C. Performance Evaluation on Digital Phantom

In the digital phantom study, the original phantom data were directly used as the ground-truth image. As mentioned before, low-dose CT can be implemented by lowering tube current or reducing projection views. To have a more comprehensive study, we tested our method in both a low-current case and a few-view case.

![Fig. 1 Digital phantoms used in the studies: a slice of digital XCAT phantom](image1)

![Fig. 2 Imaging results of different methods on digital XCAT: (a) PWLS; (b) PWLS-DL; (c) PWLS-TV; (d) PWLS-TV-DL](image2)
PSNR, SSIM, and RMSE between the true image and reconstructed images. Table II lists the performance comparison of different methods. The following columns of Table II demonstrate that whether we consider PSNR, SSIM, or RMSE, the method of PWLS-TV-DL obtains a good result.

<table>
<thead>
<tr>
<th>Method</th>
<th>PWLS</th>
<th>PWLS-DL</th>
<th>PWLS-TV</th>
<th>PWLS-TV-DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR</td>
<td>23.892</td>
<td>25.731</td>
<td>33.112</td>
<td>44.854</td>
</tr>
<tr>
<td>SSIM</td>
<td>0.936</td>
<td>0.948</td>
<td>0.977</td>
<td>0.991</td>
</tr>
<tr>
<td>RMSE</td>
<td>9.704</td>
<td>6.835</td>
<td>4.171</td>
<td>1.576</td>
</tr>
</tbody>
</table>

The profile images and residual images were compared in Figs. 3 and 4, respectively. The profiles located at the pixel positions x from 350 to 410 and y = 350. It is not difficult to find that the PWLS-TV-DL curve is closer to the Phantom curve. The results show that the PWLS-TV-DL method can help achieve image quality superior to that of the other comparison methods.

IV. DISCUSSION AND CONCLUSION

In this paper, based on the PWLS standard, we propose a new low-dose CT reconstruction solution by combining TV minimization and sparse DL. The intermediate image is reconstructed using TV minimization and then post-processed using DL to remove residual noise and produce a clinically acceptable CT image. It can be seen from simulation experiments that compared with reconstruction methods such as PWLS, PWLS-DL and PWLS-TV, this method can improve the quality of reconstructed images and produce smaller RMSE and larger PSNR and SSIM values. However, the main shortcoming of the PWLS-TV-DL algorithm is that the update of the matrix in DL increases the computational burden and requires a long running time. To solve this problem, a fast computer and dedicated hardware are needed. We believe that in the future, most iterative-based image reconstructions including the PWLS-TV-DL algorithm can be widely used in medical clinics.

REFERENCES