
 

 

 
Abstract—The Greek Energy Market is structured as a 

mandatory pool where the producers make their bid offers in day-
ahead basis. The System Operator solves an optimization routine 
aiming at the minimization of the cost of produced electricity. The 
solution of the optimization problem leads to the calculation of the 
System Marginal Price (SMP). Accurate forecasts of the SMP can 
lead to increased profits and more efficient portfolio management 
from the producer`s perspective. Aim of this study is to provide a 
comparative analysis of various machine learning models such as 
artificial neural networks and neuro-fuzzy models for the prediction 
of the SMP of the Greek market. Machine learning algorithms are 
favored in predictions problems since they can capture and simulate 
the volatilities of complex time series. 
 

Keywords—Deregulated energy market, forecasting, machine 
learning, system marginal price, energy efficiency and quality. 

I. INTRODUCTION 

LECTRICITY market prices time series are characterized 
by high volatility [1]. This is due to several factors such as 

sudden demand increases, fuel prices such as coal, petroleum 
products and natural gas, operational characteristics of 
generation plants and merit order, hydropower capacity, 
market competition, market regulation, network congestion 
and others [2]. This dependence by many and diverse factors 
provide obstacles in price forecasting.  

Contrary to demand forecasting, electricity price forecasting 
has gathered less research interest [3]. Until the recent years, 
most markets were structures as monopolies and prices were 
subject to regulative determination and control. While more 
and more markets have been transforming to competitive, 
price forecasting is viewed as an important aspect in power 
system operation. It is related with unit scheduling, fuel 
consumption, energy resources exploitation, power systems 
simulation and electricity demand modeling.  

Another fact that price forecasting holds a significant role is 
in profit maximization problems. Many studies had examined 
the retail profitability problem in competitive retail markets 
[35]-[40]. In this problem, the scope is two-fold: The retailer 
needs to define the optimal electricity procurement mechanism 
and the optimal selling price to its clients. The procurement 
mechanisms refer to pool market, forward contracts and 
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others. If the retailer is risk taker and bases its procurement in 
pool market, a reliable price forecasting model is needed. If 
forecasting errors are high, the retailer will eventually led to 
economic failure. Regarding the selling price to the 
consumers, a price forecasting model is the basis to form real-
time pricing schemes [4], [5]. Real-time pricing is viewed as 
the most accurate and fair pricing concept; it allows to transfer 
to the consumers the actual generation costs [6], [7].  

The price forecasting literature can be classified into [8], 
[9]: a) Time-series models and b) computational intelligence 
models. In the time-series models, a mathematical function is 
built that connects the current price with its past values. The 
user needs to define the type and the parameter of the 
function. In computational intelligence model no information 
about the relationship between the parameter under study and 
its past values is mandatory. Through a training phase the 
model “learns” the relationship between input and output 
training patterns. This leads to the automatic creation of the 
function that relates the inputs and outputs. 

The aforementioned scheme provides benefits in cases of 
time-series with high degree of non-linearity. Computational 
intelligence models include Artificial Neural Network (ANN), 
fuzzy logic, neuro-fuzzy models and others. The types of 
ANNs that have been examined in price forecasting literature 
are the Multi-Layered Perceptrons (MLPs), Radial Basis 
Function Networks (RBFNs), Support Vector Machines 
(SVMs), Fuzzy Neural Networks (FNNs), Recurrent Neural 
Networks (RNNs), Probabilistic Neural Networks (PNN) and 
Self-Organizing Maps (SOMs).  

The MLPs are implemented as the sole forecaster in [10]-
[18] or in hybrid models utilizing MLP and another 
forecasting system [19]-[21]. Within a hybrid model, the MLP 
is used to increase the accuracy of a traditional time-series 
models. Other papers consider the same MLP for both demand 
and price predictions [22], [23]. It should be noted that MLP 
has been used both for day-ahead and hour-ahead predictions 
[24]. 

SVMs are systems that implement a non-linear mapping of 
the original data into high dimensional space [25], [26]. SVMs 
provide a global solution to the forecasting problem contrary 
to MLPs that can be trapped in local minima during the 
training phase. The SVM is used for calculating the prediction 
intervals which quantify the uncertainty related to forecasts 
[27]. 

SOMs are unsupervised machine learning neural networks 
that are mainly used in clustering tasks. In [28] the SOM is 
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combined with a SVM for the price forecasting in New 
England market and in [29] they are combined and used for 
the PJM market.  

Fuzzy logic can be combined with ANN forming neuro-
fuzzy systems. The most common neuro-fuzzy model is the 
Adaptive Neuro-Fuzzy Inference System (ANFIS). This 
model operates well by using past prices that are very close 
chronologically with the one to be predicted. In [30], the 
ANFIS is combined with FL and ANN for price forecasting in 
Spain.  

The scope of the present paper is to examine the potential of 
MLP and ANFIS in day-ahead price forecasting for the Greek 
energy market. The Greek market operates as pool where the 
producer provides their bids and retailer provide request for 
load coverage. The SMP is a product of an algorithmic 
optimization problem solution and is the price that all 
producers are credited and retailers are charged daily. The 
Market Operator (LAGIE SA) solves the optimization 
problem and oversees the market [31]. In the present paper, 
various combinations of FFNN are examined in order to fully 
investigate the performance of a “black-box” modeling, such 
as a FFNN, approach in the SMP forecasting problem. A 
comparison takes place between FFNN and ANFIS.  

II. MODELS DESCRIPTION  

A. Data 

The data under study involve the SMP of the Greek 
interconnected system of the period 2010-2013. The period 
between 01/01/2010 and 31/12/2012 is used as training set and 
the period 01/01/2013 and 31/12/2013 as test set. The training 
set is used to define the optimal model parameters. For the 
FFNN, the parameters that need to be defined are: Training 
algorithm, number of hidden layers, number of neurons in the 
hidden layer(s) and type of neuron activation function. For 
ANFIS, the parameters are: Type of membership function and 
type of inference mechanism. The test set is used for the 
assessment of the models performance.  

Fig. 1 presents the SMP time-series of 2013. It can be 
noticed that there are many fluctuations and zero values and 
thus, special care should be placed on the selection of types 
and number of inputs of the models. Note that no external 
variables are considered such as load, hydraulic capacity, 
temperature and others. The scope is to use as inputs only 
historical SMP values.  

B. Input Selection 

In order to explore the SMP series periodicity, the Pearson 
correlation coefficient is used to measure the degree of 
dependence between current values and values up to 9 days in 
the past [24]. The results are presented in Fig. 2. SMP series 
present a periodic correlation with previous values. However, 
the degree of correlation is relatively low. Let P(h) be the 
SMP of the present hour h. Excluding P(h-1) and P(h-2) all 
other values are below 0.67. Since this study is focused on 
forecasting next day`s SMP curve, prices prior to h-24 are not 
used; they are considered unknown. For predicting the P(h), 

prices P(h-24), P(h-25) and P(h-168) are selected as inputs. 
The models are executed per hour, therefore for predicting 
next day` s SMP curve 24 executions are held, separately from 
each forecaster.  

 

 

Fig. 1 SMP time-series of the test set 
 

 

Fig. 2 Correlation coefficient values evaluating the short-term 
periodicity model 

C. Models 

The FFNN is popular computational intelligent model. 
FFNN displays the benefit of adaption to a problem`s 
requirements. Fig. 3 presents a general structure of a fully 
connected FFNN. The FFNN network is built by the neurons 
which are information processing units. The neuron is fed with 
a set of discrete signals that are modified by the weights of the 
synapse which generates an output based on the form of the 
activation function of the neurons [32]. While neural networks 
are “black-box” models, there is a set of parameters that need 
to be defined. These parameters determine the neural 
network`s structure. The training phase aims to optimize the 
weights that connect the neurons via a cost function iterative 
minimization process. Other parameters such as type of 
training algorithm, maximum number of training epochs, 
number of hidden layers and others, are determined by trial-
and-error experiments.  

ANFIS is composed by 5 layers and each layer contains 
several nodes [33]. The nodes are described by a node 
function. Fig. 4 presents the structure of ANFIS. This model is 
considered as universal approximator. The core of ANFIS is 
the inference system that refers to a set of fuzzy IF-THEN 
rules that are characterized by their learning capability to 
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approximate nonlinear functions and signals.  
 

 

Fig. 3 General structure of FFNN 
 

 

Fig. 4 General structure of ANFIS 

D. Validation 

Let a
mP and f

mP are the actual and predicted SMP of the m-th 

day of the test set. The Mean Absolute Range Normalized 
Error (MARNE) is the absolute difference between the actual 
and forecast SMP, normalized to the maximum SMP [34]: 

 
a f

a
1

1
MARNE= 100

max( )

M
m m

m m

P P

M P


                     (1) 

 
MARNE is percentage indicator that provides a reliable 

metric in cases of time-series with zero or close to zero values. 
The MAPE indicator is widely used in load forecasting studies 
[35]. However, for time series with close to zero values such as 
the SMP of the Greek market, MAPE receives extremely large 
values, a fact that makes it less practical to draw conclusions 
regarding the robustness of a model.  

III. RESULTS  

For the FFNN, three different functions are considered, 
namely the logistic sigmoid (log.), the hyperbolic tangent 
sigmoid (tan.) and the linear (lin.) functions. Two training 
algorithms are considered namely the Levenberg–Marquardt 
(LM) and the Resilient Back-Propagation (RBP). These 
training algorithms are improvements of the basic back-
propagation algorithm. For both FFNN and ANFIS the 
maximum number of epochs is set to 500. ANFIS parameters 
are Sugeno type inference mechanism and Gaussian 

membership function. While there is a gap in the literature for 
SMP forecasting in the Greek energy market, a detailed 
analysis is recommended to investigate various topologies of 
FFNNs. For the determination of the optimal topology, a 
series of experiments takes place that differ in terms of neuron 
activation function and training algorithm. One hidden is 
considered for FFNN and the number of neurons varies 
between 2 and 30 with an increasing step of 1.  

Tables I-IV present the training set and test set errors for the 
different topologies of FFNN. The MARNE values refer to the 
lowest one that corresponds to the experiment with variable 
number if neurons in the hidden layer. According to the results 
presented in the tables, the lower MARNEs are obtained by 
the RBP training algorithm for both the training and test sets. 
For the LM algorithm, training set MARNE ranges from 
7.76% to 18.16% while test set MARNE ranges from 10.22% 
to 36.07%. For the RBP algorithm, training set MARNE 
ranges from 7.10% to 18.11% while test set MARNE ranges 
from 9.46% to 36.10%. The use of logistic function in the 
output layer leads to errors above 30%, a fact that prohibits its 
usage and indicated model`s poor performance. The lowest 
error is 9.46% and refers to the network with logistic function 
in the hidden layer and tangent sigmoid in the output one.  

 
TABLE I 

TRAINING SET MARNE (LM ALGORITHM) 

Hidden 
layer 

Output layer 

log. tan. lin. 

log. 17.90 7.75 7.76 

tan. 17.93 7.78 7.76 

lin. 18.16 7.95 7.91 

 
TABLE II 

TEST SET MARNE (LM ALGORITHM) 

Hidden 
layer 

Output layer 

log. tan. lin. 

log. 36.07 10.22 10.25 

tan. 36.06 10.24 10.42 

lin. 36.11 10.28 10.53 

 
TABLE III 

TRAINING SET MARNE (RBP ALGORITHM) 

Hidden 
layer 

Output layer 

log. tan. lin. 

log. 17.87 7.12 7.14 

tan. 17.89 7.10 7.23 

lin. 18.11 7.37 7.39 

 
TABLE V 

TEST SET MARNE (RBP ALGORITHM) 

Hidden 
layer 

Output layer 

log. tan. lin. 

log. 36.06 9.57 9.46 

tan. 36.08 9.54 9.60 

lin. 36.10 10.08 10.40 

 

The consideration of tangent function leads in general to 
robust performance. Figs. 5-8 present the MARNE curves 
with respect to the number of neurons in the hidden layer for 
various topologies. It can be noticed that the variation of the 
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number of neurons do not considerable influence the 
prediction accuracy. 

Regarding the application of ANFIS, the training set used 
for FFNN leads to the no convergence of the model. A 
reduction of the training set took place and more specifically, 
the training set used for ANFIS corresponds to the period 
01/01/2012-31/12/2012. The training set MARNE is 7.42% 
and test set MARNE is 9.22%. In conclusion, for the SMP 
problem under study, ANFIS is superior to FFNN.  

 

 

Fig. 5 MARNE variation per number of neurons in the hidden layer 
for FFNN trained by LM and using tangent sigmoid function for the 

hidden and output layer 
 

 

Fig. 6 MARNE variation per number of neurons in the hidden layer 
for FFNN trained by LM and using linear function for the hidden and 

output layer 
 

 

Fig. 7 MARNE variation per number of neurons in the hidden layer 
for FFNN trained by RBP and using tangent sigmoid function for the 

hidden and output layer 

 

Fig. 8 MARNE variation per number of neurons in the hidden layer 
for FFNN trained by RBP and using linear function for the hidden 

and output layer 

IV. CONCLUSIONS 

With the continuous deregulation of energy markets across 
the globe, new opportunities arise for market participants. 
Market prices are the output of day-ahead strategic actions of 
the participants. The SMP is influenced by many factors such 
as demand, natural gas prices, renewable energy sources 
capacity and others. This leads to increased volatility in shape 
of the SMP time series. The aforementioned fact provides 
obstacles in the utilization of traditional time series models 
and hence, more advanced algorithms should be examined.  

The aforementioned fact provides obstacles in the 
utilization of traditional time series models and hence, more 
advanced algorithms should be examined. The present paper 
serves as an initial step to examine the potential of 
computational intelligence models in SMP forecasting for the 
Greek energy market. While there is a lack in the literature for 
studies in SMP forecasting for the Greek sector, various 
combination of FFNN were investigated in order to fully 
check the relationship between network parameters and 
prediction accuracy. Simulation results indicate that the 
parameters of the FFNN influence the results. Among the two 
models, ANFIS leads to lower errors and therefore, it is more 
suitable for the problem under study.  
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