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Abstract—A class of implicit systems is known as a more
generalized class of systems than a class of explicit systems. To
establish a control method for such a generalized class of systems, we
adopt model predictive control method which is a kind of optimal
feedback control with a performance index that has a moving
initial time and terminal time. However, model predictive control
method is inapplicable to systems whose all state variables are not
exactly known. In other words, model predictive control method is
inapplicable to systems with limited measurable states. In fact, it
is usual that the state variables of systems are measured through
outputs, hence, only limited parts of them can be used directly. It is
also usual that output signals are disturbed by process and sensor
noises. Hence, it is important to establish a state estimation method
for nonlinear implicit systems with taking the process noise and
sensor noise into consideration. To this purpose, we apply the model
predictive control method and unscented Kalman filter for solving
the optimization and estimation problems of nonlinear implicit
systems, respectively. The objective of this study is to establish a
model predictive control with unscented Kalman filter for nonlinear
implicit systems.

Keywords—Model predictive control, unscented Kalman filter,

nonlinear systems, implicit systems.

I. INTRODUCTION

MODEL predictive control is a feedback control

approach that optimizes control performance over

a finite horizon, and its performance index has moving

initial and terminal times. So far, several MPC methods

have been proposed for fluid systems [1]-[4], spatiotemporal

dynamic systems [5]-[9], Schrödinger systems [10], [11],

stochastic systems [12]-[14], and probabilistic constrained

systems [15]-[17].

Although the aforementioned studies have achieved

tremendous progress in controlling various kinds of systems,

all systems addressed in the above studies belong to a class

of so-called explicit systems. On the other hand, the control

problem of so-called implicit systems that belong to a more

generalized class of systems than a class of explicit systems

is even more challenging to study. In [18], model predictive

control method has been proposed for a class of discrete-time

nonlinear implicit systems. In this study, we examine the

problem of model predictive control for such a class of implicit

systems.
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Based on the model predictive control method, the present

control input is determined by solving a finite-horizon

open-loop optimal control problem using the present state of

the system as the initial state, and this procedure is repeated

at each sampling time. Hence, the current state of the system

is assumed to be exactly known in this approach. In fact,

it is assumed in the aforementioned result [18] that all state

variables are accessible for designing a controller. However,

it is usual that the state variables of systems are measured

through the outputs and hence only limited parts of them

can be used directly. The control method proposed in [18]

is inapplicable to systems with limited measurable states.

The design problem of output feedback model predictive

control is still unsolved for nonlinear implicit systems with

limited measurable states. Therefore, the objective of this

study is to provide a generalized framework for designing an

output feedback model predictive control for nonlinear implicit

systems with limited measurable states. For this purpose, we

establish a state estimation method based on an unscented

Kalman filter [19] with taking the process noise and sensor

noise into consideration.

This paper is organized as follows. In Section II, we define

the system model and notations. In Section III, we consider the

problem of model predictive control for a class of discrete-time

nonlinear implicit systems. Using the variational principle, we

derive the stationary conditions that must be satisfied for a

performance index to be optimized. In Section IV, we provide

a state estimation method based on an unscented Kalman filter

for a class of discrete-time nonlinear implicit systems. Finally,

some concluding remarks are given in Section V.

II. NOTATION AND SYSTEM MODEL

Let R denote a set of real numbers. Let R+ and Z+ denote

the sets of nonnegative real numbers and integers, respectively.

Let N denote the sets of natural numbers (positive integers).

For a matrix A ∈ R
n×n, the transpose and the inverse of A

are denoted by AT and A−1, respectively. The determinant

and rank of a matrix A are denoted by det(A) and rank(A),
respectively. Let I denote the identity matrix.

For a scalar function φ(x) : Rn → R, the differentiation of

φ(x) with respect to x ∈ R
n is defined by

∂ϕ(x)

∂x
:=

[
∂ϕ(x)
∂x1

∂ϕ(x)
∂x2

· · · ∂ϕ(x)
∂xn

]

The Jacobian matrix of a vector-valued function F (x) :
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R
n → R

n is defined by

∂F (x)

∂x
:=

⎡
⎢⎢⎣

∂F1(x)
∂x1

· · · ∂F1(x)
∂xn

...
. . .

...
∂Fn(x)
∂x1

· · · ∂Fn(x)
∂xn

⎤
⎥⎥⎦

In this study, we consider the following discrete-time

nonlinear implicit systems:

E (x(t))x(t+ 1) = F (x(t), u(t)) , (1)

where t ∈ Z+, x(t) : Z+ → R
n, and u(t) : Z+ → R

m

denote a temporal variable, the state, and the control input,

respectively. E (x(t)) : R
n → R

n×n and F (x(t), u(t)) :
R

n × R
m → R

n are continuously differentiable function.

For examples, the discretized equations for nonlinear diffusion

process [20] and RLC network circuits [21] belong to a class

of systems described by (1).

Here, we assume that E (x(t)) is not necessarily of

full-rank, i.e., rankE (x(t)) ≤ n. In particular, we call system

(1) the descriptor system when detE (x(t)) = 0. Without loss

of generality, we assume F (0, 0) = 0, that is, the origin x = 0
is the equilibrium point.

III. MODEL PREDICTIVE CONTROL

In this section, we consider the model predictive control

problem of system (1). Using the variational principle, we

analytically derive the stationary conditions that must be

satisfied for a performance index to be optimized. The control

input at each time t is determined so as to minimize the

performance index given by

J = φ (x(t+N)) +

t+N−1∑
k=t

L (x(k), u(k)). (2)

Therein, N ∈ N denotes the length of prediction horizon. φ :
R

n → R+ and L : Rn×R
m → R+ are so-called terminal cost

function and stage cost function, respectively, and assumed to

be continuously differentiable functions with φ(0) = 0 and

L(0, 0) = 0.

The minimization problem of (2) subject to (1) can be

reduced to the minimization of the following performance

index introduced using the costate λ ∈ R
n associated with

system equation (1):

J̄ = φ (x(t+N)) +
t+N−1∑
k=t

[
L (x(k), u(k))

+λT(k + 1) {F (x(k), u(k))− E (x(k))x(k + 1)}
]

(3)

Let H ∈ R denote the Hamiltonian defined by

H := L (x(k), u(k)) + λT(k + 1)F (x(k), u(k)) . (4)

Let δJ̄ , δx, δλ, and δu denote the variations (infinitesimal

changes) in J̄ , x, λ, and u, respectively. Since the optimal

solution must satisfy the stationary condition δJ̄ = 0, we

need to consider the variation δJ̄ due to the variations

δx, δλ, and δu. Then, we need to calculate δJ̄ =
J (x+ δx, λ+ δλ, u+ δu)− J (x, λ, u). Applying the Taylor

expansion into J (x+ δx, λ+ δλ, u+ δu) around (x, λ, u)
and neglecting the high order terms of each variation, we can

compute the variation in J̄ . Thus, δJ̄ can be described by

δJ̄ =

t+N∑
k=t

∂J̄

∂x(k)
δx(k) +

t+N−1∑
k=t

∂J̄

∂u(k)
δu(k)

+

t+N∑
k=t+1

∂J̄

∂λ(k)
δλ(k). (5)

It follows from δJ̄ = 0 that we can obtain stationary

conditions that must be satisfied for a performance index to be

optimized. The detailed computation on δJ̄ = 0 can be found

in [18]. On the basis of the variational principle, we obtain

the necessary conditions for a stationary value of J̄ over the

horizon (t ≤ k ≤ t+N) as follows.

E (x(k))x(k + 1) = F (x(k), u(k)) (6a)

λT(t+N)E (x(t+N − 1)) =
∂φ (x(t+N))

∂x(t+N)
(6b)

λT(k)E (x(k − 1)) =
∂H (x(k), λ(k + 1), u(k))

∂x(k)

− λT(k + 1)
∂ {E (x(k))x(k + 1)}

∂x(k)
(6c)

∂H (x(k), λ(k + 1), u(k))

∂u(k)
= 0 (6d)

Note that if E (x(k)) = I, then the obtained

stationary conditions (6) can be reduced to the well-known

Euler–Lagrange equations. Hence, we see that the stationary

conditions (6) are natural extensions to the Euler–Lagrange

equations. Accordingly, we call the stationary conditions (6)

the generalized Euler–Lagrange equations.

A well-known difficulty in solving nonlinear optimal

control problems is that the obtained stationary conditions

cannot be solved analytically in general. Thus, the

computational algorithm for numerically solving the

generalized Euler–Lagrange equations (6) has been proposed

in [18]. The remainder of this section is devoted to a brief

description of the algorithm.

Let U(t) ∈ R
nN be defined by

U(t) := [uT(t), uT(t+ 1), · · · , uT(t+N − 1)]T.

For a given initial optimal solution U(t) and the present state

x(t), we first determine the state over the prediction horizon

by using (6a), that is, x(k) for k = t, t + 1, · · · , t + N is

calculated recursively from k = t to k = t+N by (6a). Next,

the terminal costate λ(t+N) is determined from the obtained

terminal state x(t+N) by (6b). Consequently, the costate over

the prediction horizon is also determined by using (6c), that

is, λ(k) for k = t + 1, · · · , t + N is calculated recursively

from k = t +N to k = t + 1 by (6c). Fig. 1 shows that the

procedure for solving the equation of x is forward, whereas

the one for solving the equation of λ is backward.

Because x(k) and λ(k) for k = t, t + 1, · · · , t + N are

determined by U(t) and x(t) through (6a)-(6c), the remaining
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�
k

t t+N

�
�

x(k)

λ(k)

Fig. 1 Procedure used for obtaining numerical solutions

conditions (6d) for k = t, t+1, · · · , t+N can be regarded as

a single equation,

D (U(t), x(t), t) :=

⎡
⎢⎢⎢⎢⎣

∂H(x(t),λ(t+1),u(t))
∂u(t)

∂H(x(t+1),λ(t+2),u(t+1))
∂u(t+1)

...
∂H(x(t+N−1),λ(t+N),u(t+N−1))

∂u(t+N−1)

⎤
⎥⎥⎥⎥⎦
(7)

Because x(k) and λ(k) are uniquely determined through

(6a)-(6c) for given U(t) and x(t), x(k) and λ(k) depend

on U(t) and x(t). Hence, it is reasonable to consider the

arguments of D as U(t), x(t), t.
For given U(t) and x(t), D is not necessarily equal to

zero, so ‖D‖ is used to evaluate the optimality performance.

If ‖D‖ = 0 is satisfied for the given U(t) and x(t), then

the stationary conditions are satisfied. Several algorithms have

been developed such that ‖D‖ can be decreased by suitably

updating U(t), as discussed below.

Instead of solving D(U(t), x(t), t) = 0 itself at each time

by an iterative method such as the steepest descent method or

Newton’s method, we find the derivative of U(t) with respect

to time so that D(U(t), x(t), t) = 0 is satisfied identically.

Namely we determine U̇(t) such that

Ḋ (U(t), x(t), t) = −ξD (U(t), x(t), t) (8)

is satisfied, where ξ is a positive constant introduced to

stabilize D = 0. If we choose ξ = 1/Δt, then the stability

of (8) with forward difference approximation is guaranteed,

where Δt denotes the sampling period. By total differentiation,

we obtain

∂D

∂U(t)
U̇(t) = −ξD − ∂D

∂x(t)
ẋ(t)− ∂D

∂t
. (9)

This equation can be regarded as a linear algebraic equation

with the coefficient matrix (∂D/∂U(t)), which can be used to

determine U̇(t) for the given U(t), x(t), ẋ(t), and t. Then, if

the Jacobian (∂D/∂U) is nonsingular, we obtain the following

differential equation for U(t):

U̇(t) =

(
∂D

∂U(t)

)−1 (
−ξD − ∂D

∂x(t)
ẋ(t)− ∂D

∂t

)
. (10)

We can update the solution U(t) of D(U(t), x(t), t) = 0
without using an iterative optimization method by integrating

(10) in real time as, for example, U(t+Δt) = U(t)+U̇(t)Δt.
This approach is a type of continuation method [22] in the

sense that the solution curve U(t) is traced by integrating a

differential equation. From the computational viewpoint, the

differential equation (10) still involves expensive operations,

i.e., solving the Jacobians (∂D/∂U(t)), (∂D/∂x(t)), and

(∂D/∂t) and linear algebraic equation associated with

(∂D/∂U)−1. To reduce the computational cost of the

Jacobians and linear equation, we employ two techniques:

the forward difference approximation for the products of

the Jacobians and vectors and the GMRES method [23] for

the linear algebraic equation. Using the forward difference

approximation, we can obtain a linear equation with respect

to U̇ . Thereafter, we can apply the GMRES algorithm to find

the solution U̇(t) of the linear equation. Consequently, U can

be updated so that D = 0 is stabilized.

Here, it is important to note that the above numerical

algorithm is inapplicable to systems whose current state x(t)
is not exactly known. In other words, model predictive control

method is inapplicable to systems with limited measurable

states.

In fact, it is usual that the state variables of systems are

measured through outputs, hence, only limited parts of them

can be used directly. It is also usual that output signals are

disturbed by process and sensor noises. Hence, it is important

to establish a state estimation method for nonlinear implicit

systems with taking the process noise and sensor noise into

consideration.

IV. ESTIMATION BASED ON UNSCENTED KALMAN FILTER

In this section, we design an observer using unscented

Kalman filter [19] for estimating the state x(t) of system

(1). For this purpose, we introduce the following observer

system with taking the process noise and observation noise

into consideration.

E (x̂(t)) x̂(t+ 1) = F (x̂(t), u(t)) + v(t), (11a)

y(t) = G (x(t), u(t)) + w(t), (11b)

where x̂(t) denotes the estimation of x(t) and y(t) is the

output. E and F are given in (1). v(t) and w(t) denote the

process noise and the observation noise, respectively, which

can be caused by disturbances.

The optimal estimate in the minimum mean-squared error

sense is given by the conditional mean. Let x̂(i|j) be the

mean of x̂(i) conditioned on all of the observations up to

and including time j, i.e., x̂(i|j) = E
[
x̂(i)|Yj

]
, where

Yj := {y(1), y(2), · · · , y(j)}.

It is assumed that the means of v(t) and w(t) are zero for

all time t. Let Qv(t) and Qw(t) be the covariances of v(t)
and w(t), respectively.

The UKF [19] first predicts the mean and covariance of

a future state using the process model and weighted sigma
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points as follows:

E(χi(t))χi(t+ 1|t) = F (χi(t), u(t)), (12)

x̂(t+ 1|t) =
2n∑
i=0

W iχi(t+ 1|t), (13)

Qx̂(t+ 1|t) = Qv(t+ 1)

+
2n∑
i=0

W i
(
χi(t+ 1|t)− x̂(t+ 1|t)) (χi(t+ 1|t)− x̂(t+ 1|t))T,

(14)

where W i and χi denote the weight and sigma point,

respectively. The definitions of W i and χi can be found

in [19]. χi(t + 1|t) can be determined from (12). Then,

x̂(t+1|t) and Qx̂(t+1|t) are determined form (13) and (14),

respectively.

After we redraw a new set of sigma points χ̄i to

incorporate the effect of the additive process noise, the

predicted observation is calculated by

ȳ(t+ 1|t) =
2n∑
i=0

W iG(χ̄i(t+ 1|t), u(t+ 1)). (15)

Moreover, the cross covariance P and innovation covariance

R are determined by

P(t+ 1|t) =
2n∑
i=0

W i
(
χi(t+ 1|t)− x̂(t+ 1|t))

× (
G(χ̄i(t+ 1|t), u(t+ 1))− ȳ(t+ 1|t))T

(16)

R(t+ 1|t) =
2n∑
i=0

W i
(
G(χ̄i(t+ 1|t), u(t+ 1))− ȳ(t+ 1|t))

× (
G(χ̄i(t+ 1|t), u(t+ 1))− ȳ(t+ 1|t))T

+Qw(t+ 1) (17)

Consequently, the estimate at time t + 1 is obtained by

updating the prediction by the linear update rule:

K(t+ 1) = P(t+ 1|t)R−1(t+ 1|t), (18a)

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) +K(t+ 1) (y(t+ 1)− ȳ(t+ 1|t)) ,
(18b)

Qx̂(t+ 1|t+ 1) = Qx̂(t+ 1|t)−K(t+ 1)R(t+ 1|t)KT(t+ 1).
(18c)

Note that an unscented Kalman filter is more accurate than

an extended Kalman filter [24] and easier to implement than

an extended Kalman filter, because an unscented Kalman filter

does not involve any linearization steps, eliminating the need

to derive of the Jacobian matrix of E−1(x)F (x). Also, note

that an extended Kalman filter is inapplicable to implicit

systems in case of detE (x(t)) = 0.

Using the estimated state x̂(t) as the current state x(t), we

can apply the model predictive control to implicit nonlinear

systems whose all state variables are not exactly known. A

schematic view of systems with the proposed method is shown

in Fig. 2.

Fig. 2 A schematic view of systems with the proposed method

V. CONCLUSION

The model predictive control method proposed in [18] for

implicit nonlinear systems is inapplicable to systems with

limited measurable states. It is usual that the state variables

of systems are measured through outputs, hence, only limited

parts of them can be used directly. It is also usual that output

signals are disturbed by process and sensor noises. Motivated

by the above fact, this paper proposes a state estimation

method for nonlinear implicit systems with taking the process

noise and sensor noise into consideration. Consequently, we

establish a model predictive control method with a state

estimation method based on unscented Kalman filter for

nonlinear implicit systems. It is known that time delays may

cause instabilities of the closed-loop system and lead to more

complex analysis [25]-[30]. The control problem of implicit

nonlinear systems with time delays is a possible future work.
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