Piezoelectric Micro-generator Characterization for Energy Harvesting Application
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32807
Piezoelectric Micro-generator Characterization for Energy Harvesting Application

Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima

Abstract:

This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.

Keywords: Piezoelectric, microgenerator, energy harvesting, cantilever beam.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1340554

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837

References:


[1] X. Zhang, J. Fang, F. Meng e X. Wei, A Novel Self-Powered Wireless Sensor Node Based on Energy Harvesting for Mechanical Vibration Monitoring, Hindawi Publishing Corporation, p. 5, 2014.
[2] H. Liu, C. Quan, C. J. Tay, T. Kobayashi and C. Lee, ”A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibration,” Physics Procedia, vol. 19, pp. 129-133, 2011.
[3] R. Oliquino, S. Islam, H. Eren, Effects of Types of Faults on Generator Vibration Signatures, in: Australasian Universities Power Engineering Conference, 2003: pp. 16.
[4] F. Al-Badour, M. Sunar e L. Cheded, Vibration analysis of rotating machinery using timefrequency analysis and wavelet techniques, Mechanical Systems and Signal Processing, vol. 25, pp. 2083-2101, 2011.
[5] J. K. Sinha e K. Elbhbah, A future possibility of vibration based condition monitoring of rotating machines, Mechanical Systems and Signal Processing, vol. 34, pp. 231-240, 2012.
[6] P. Poddera, A. Amann e S. Roy, A bistable electromagnetic micro-power generator using FR4-based, Sensors and Actuators A: Physical, vol. 227, pp. 39-47, 2015.
[7] R. Moraisa, N. Silva, P.Santos, C. Frias, J. Ferreira, A. Ramos, J. Simesd e J. a. M. Reise, Permanent magnet vibration power generator as an embedded mechanism for smart hip prosthesis, Procedia Engineering, vol. 5, pp. 766-769, 2012.
[8] S. Roundy, E. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. Rabaey, P. Wright e V. Sundararajan, Improving power output for vibration-based energy scavengers, IEEE Pervasive Computing, vol. 4, 2005.
[9] S. Roundy, P. K. Wright e J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer Communications, vol. 26, pp. 1131-1144, 2003.
[10] S. Roundy e P. K. Wright, A piezoelectric vibration based generator for wireless electronics, Smart Materials and Structures, vol. 3, p. 5, 2004.
[11] B. Pkosawski, P. Krasiski e A. Napieralski, Power processing circuits for wireless sensor nodes utilizing energy harvested from mechanical vibrations, em Proceedings of the 18th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011, Gliwice, Poland, 2011.
[12] C. T. Sherman, P. K. Wright e R. M. White, Validation and testing of a MEMS piezoelectric permanent magnet current sensor with vibration canceling, Sensors and Actuators A: Physical, vol. 248, pp. 206-2013, 2016.
[13] X.-r. Chen, T.-q. Yang, W. Wang e X. Yao, Vibration energy harvesting with a clamped piezoelectric circular diaphragm, Elsevier: Ceramics International, vol. 38, pp. 271 - 274, 2011.
[14] W.-J. Wu, Y.-F. Chen, Y.-Y. Chen, C.-S. Wang e Y.-H. Chen, Smart Wireless Sensor Network Powered by Random Ambient Vibrations, em IEEE International Conference on Systems, Man, Taipei, Taiwan, 2006.
[15] N. Mohajer e M. Mahjoob, Modeling and Electrical Optimization of A Designed Piezoelectric-Based Vibration Energy Harvesting System, em RSI/ISM International Conference on Robotics and Mechatronics, Teharan, 2013.
[16] C. Williams e R. Yates , Analysis of a micro-electric generator for microsystems, Sensors and Actuators A, p. 52, 1996.
[17] F. Lu, H. P. Lee e S. P. Lim, Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications, Smart Materials and Structures, vol. 13, n 1, 2003.
[18] T. Galchev, E. E. Aktakka e K. Najafi, A Piezoelectric Parametric Frequency Increased Generator for Harvesting Low-Frequency Vibrations, Journal of Microelectromechanical Systems, vol. 21, 2012.
[19] M. Niroomand e H. R. Foroughi, A rotary electromagnetic microgenerator for energy harvesting from human motions, Journal of Applied Research and Technology, vol. 14, pp. 269-267, 2016.